Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid
We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of...
Ausführliche Beschreibung
Autor*in: |
Hostetler, S.W [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Water resources research - Hoboken, NJ : Wiley, 1965, 52(2016), 12, Seite 9600 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2016 ; number:12 ; pages:9600 |
Links: |
---|
DOI / URN: |
10.1002/2016WR018665 |
---|
Katalog-ID: |
OLC1987623347 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1987623347 | ||
003 | DE-627 | ||
005 | 20220221191548.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2016WR018665 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1987623347 | ||
035 | |a (DE-599)GBVOLC1987623347 | ||
035 | |a (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 | ||
035 | |a (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Hostetler, S.W |e verfasserin |4 aut | |
245 | 1 | 0 | |a Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. | ||
700 | 1 | |a Alder, J.R |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Water resources research |d Hoboken, NJ : Wiley, 1965 |g 52(2016), 12, Seite 9600 |w (DE-627)129088285 |w (DE-600)5564-5 |w (DE-576)014422980 |x 0043-1397 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2016 |g number:12 |g pages:9600 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2016WR018665 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1859504530 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_4219 | ||
936 | b | k | |a 38.85 |q AVZ |
951 | |a AR | ||
952 | |d 52 |j 2016 |e 12 |h 9600 |
author_variant |
s h sh |
---|---|
matchkey_str |
article:00431397:2016----::mlmnainneautooaotlwtraacmdl |
hierarchy_sort_str |
2016 |
bklnumber |
38.85 |
publishDate |
2016 |
allfields |
10.1002/2016WR018665 doi PQ20170206 (DE-627)OLC1987623347 (DE-599)GBVOLC1987623347 (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem DE-627 ger DE-627 rakwb eng 550 DE-600 38.85 bkl Hostetler, S.W verfasserin aut Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. Alder, J.R oth Enthalten in Water resources research Hoboken, NJ : Wiley, 1965 52(2016), 12, Seite 9600 (DE-627)129088285 (DE-600)5564-5 (DE-576)014422980 0043-1397 nnns volume:52 year:2016 number:12 pages:9600 http://dx.doi.org/10.1002/2016WR018665 Volltext http://search.proquest.com/docview/1859504530 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO GBV_ILN_4219 38.85 AVZ AR 52 2016 12 9600 |
spelling |
10.1002/2016WR018665 doi PQ20170206 (DE-627)OLC1987623347 (DE-599)GBVOLC1987623347 (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem DE-627 ger DE-627 rakwb eng 550 DE-600 38.85 bkl Hostetler, S.W verfasserin aut Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. Alder, J.R oth Enthalten in Water resources research Hoboken, NJ : Wiley, 1965 52(2016), 12, Seite 9600 (DE-627)129088285 (DE-600)5564-5 (DE-576)014422980 0043-1397 nnns volume:52 year:2016 number:12 pages:9600 http://dx.doi.org/10.1002/2016WR018665 Volltext http://search.proquest.com/docview/1859504530 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO GBV_ILN_4219 38.85 AVZ AR 52 2016 12 9600 |
allfields_unstemmed |
10.1002/2016WR018665 doi PQ20170206 (DE-627)OLC1987623347 (DE-599)GBVOLC1987623347 (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem DE-627 ger DE-627 rakwb eng 550 DE-600 38.85 bkl Hostetler, S.W verfasserin aut Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. Alder, J.R oth Enthalten in Water resources research Hoboken, NJ : Wiley, 1965 52(2016), 12, Seite 9600 (DE-627)129088285 (DE-600)5564-5 (DE-576)014422980 0043-1397 nnns volume:52 year:2016 number:12 pages:9600 http://dx.doi.org/10.1002/2016WR018665 Volltext http://search.proquest.com/docview/1859504530 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO GBV_ILN_4219 38.85 AVZ AR 52 2016 12 9600 |
allfieldsGer |
10.1002/2016WR018665 doi PQ20170206 (DE-627)OLC1987623347 (DE-599)GBVOLC1987623347 (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem DE-627 ger DE-627 rakwb eng 550 DE-600 38.85 bkl Hostetler, S.W verfasserin aut Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. Alder, J.R oth Enthalten in Water resources research Hoboken, NJ : Wiley, 1965 52(2016), 12, Seite 9600 (DE-627)129088285 (DE-600)5564-5 (DE-576)014422980 0043-1397 nnns volume:52 year:2016 number:12 pages:9600 http://dx.doi.org/10.1002/2016WR018665 Volltext http://search.proquest.com/docview/1859504530 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO GBV_ILN_4219 38.85 AVZ AR 52 2016 12 9600 |
allfieldsSound |
10.1002/2016WR018665 doi PQ20170206 (DE-627)OLC1987623347 (DE-599)GBVOLC1987623347 (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem DE-627 ger DE-627 rakwb eng 550 DE-600 38.85 bkl Hostetler, S.W verfasserin aut Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. Alder, J.R oth Enthalten in Water resources research Hoboken, NJ : Wiley, 1965 52(2016), 12, Seite 9600 (DE-627)129088285 (DE-600)5564-5 (DE-576)014422980 0043-1397 nnns volume:52 year:2016 number:12 pages:9600 http://dx.doi.org/10.1002/2016WR018665 Volltext http://search.proquest.com/docview/1859504530 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO GBV_ILN_4219 38.85 AVZ AR 52 2016 12 9600 |
language |
English |
source |
Enthalten in Water resources research 52(2016), 12, Seite 9600 volume:52 year:2016 number:12 pages:9600 |
sourceStr |
Enthalten in Water resources research 52(2016), 12, Seite 9600 volume:52 year:2016 number:12 pages:9600 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Water resources research |
authorswithroles_txt_mv |
Hostetler, S.W @@aut@@ Alder, J.R @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129088285 |
dewey-sort |
3550 |
id |
OLC1987623347 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987623347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191548.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016WR018665</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987623347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987623347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hostetler, S.W</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alder, J.R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water resources research</subfield><subfield code="d">Hoboken, NJ : Wiley, 1965</subfield><subfield code="g">52(2016), 12, Seite 9600</subfield><subfield code="w">(DE-627)129088285</subfield><subfield code="w">(DE-600)5564-5</subfield><subfield code="w">(DE-576)014422980</subfield><subfield code="x">0043-1397</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:9600</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016WR018665</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1859504530</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2016</subfield><subfield code="e">12</subfield><subfield code="h">9600</subfield></datafield></record></collection>
|
author |
Hostetler, S.W |
spellingShingle |
Hostetler, S.W ddc 550 bkl 38.85 Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
authorStr |
Hostetler, S.W |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129088285 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0043-1397 |
topic_title |
550 DE-600 38.85 bkl Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
topic |
ddc 550 bkl 38.85 |
topic_unstemmed |
ddc 550 bkl 38.85 |
topic_browse |
ddc 550 bkl 38.85 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j a ja |
hierarchy_parent_title |
Water resources research |
hierarchy_parent_id |
129088285 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Water resources research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129088285 (DE-600)5564-5 (DE-576)014422980 |
title |
Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
ctrlnum |
(DE-627)OLC1987623347 (DE-599)GBVOLC1987623347 (PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60 (KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem |
title_full |
Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
author_sort |
Hostetler, S.W |
journal |
Water resources research |
journalStr |
Water resources research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
9600 |
author_browse |
Hostetler, S.W |
container_volume |
52 |
class |
550 DE-600 38.85 bkl |
format_se |
Aufsätze |
author-letter |
Hostetler, S.W |
doi_str_mv |
10.1002/2016WR018665 |
dewey-full |
550 |
title_sort |
implementation and evaluation of a monthly water balance model over the u.s. on an 800 m grid |
title_auth |
Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
abstract |
We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. |
abstractGer |
We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. |
abstract_unstemmed |
We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO GBV_ILN_4219 |
container_issue |
12 |
title_short |
Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid |
url |
http://dx.doi.org/10.1002/2016WR018665 http://search.proquest.com/docview/1859504530 |
remote_bool |
false |
author2 |
Alder, J.R |
author2Str |
Alder, J.R |
ppnlink |
129088285 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/2016WR018665 |
up_date |
2024-07-03T14:42:38.700Z |
_version_ |
1803569341347659776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987623347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191548.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016WR018665</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987623347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987623347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c650-c8dfe03ebbc34236c8f1648a4e8eceb4b9864b9a9c0337cf7dd33dbf2a3da9b60</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0046260820160000052001209600implementationandevaluationofamonthlywaterbalancem</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hostetler, S.W</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation and evaluation of a monthly water balance model over the U.S. on an 800 m grid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We simulate the 1950-2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alder, J.R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water resources research</subfield><subfield code="d">Hoboken, NJ : Wiley, 1965</subfield><subfield code="g">52(2016), 12, Seite 9600</subfield><subfield code="w">(DE-627)129088285</subfield><subfield code="w">(DE-600)5564-5</subfield><subfield code="w">(DE-576)014422980</subfield><subfield code="x">0043-1397</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:9600</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016WR018665</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1859504530</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2016</subfield><subfield code="e">12</subfield><subfield code="h">9600</subfield></datafield></record></collection>
|
score |
7.402128 |