Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events
A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measureme...
Ausführliche Beschreibung
Autor*in: |
Yoon, Moonseok [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Global Navigation Satellite Systems (GNSS) Equatorial plasma bubble (EPB) |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on geoscience and remote sensing - New York, NY : IEEE, 1964, 55(2017), 1, Seite 261-271 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2017 ; number:1 ; pages:261-271 |
Links: |
---|
DOI / URN: |
10.1109/TGRS.2016.2604861 |
---|
Katalog-ID: |
OLC198767037X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198767037X | ||
003 | DE-627 | ||
005 | 20230715011822.0 | ||
007 | tu | ||
008 | 170207s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TGRS.2016.2604861 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC198767037X | ||
035 | |a (DE-599)GBVOLC198767037X | ||
035 | |a (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 | ||
035 | |a (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 550 |q DNB |
100 | 1 | |a Yoon, Moonseok |e verfasserin |4 aut | |
245 | 1 | 0 | |a Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. | ||
650 | 4 | |a Global Navigation Satellite Systems (GNSS) | |
650 | 4 | |a Decorrelation | |
650 | 4 | |a Frequency measurement | |
650 | 4 | |a Measurement uncertainty | |
650 | 4 | |a Equatorial plasma bubble (EPB) | |
650 | 4 | |a ionospheric spatial decorrelation | |
650 | 4 | |a Plasmas | |
650 | 4 | |a Satellites | |
650 | 4 | |a ionospheric remote sensing | |
650 | 4 | |a Noise measurement | |
650 | 4 | |a Receivers | |
650 | 4 | |a High temperature plasmas | |
650 | 4 | |a Research | |
650 | 4 | |a Plasma (Ionized gases) | |
650 | 4 | |a Ionospheric research | |
700 | 1 | |a Kim, Dongwoo |4 oth | |
700 | 1 | |a Lee, Jiyun |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on geoscience and remote sensing |d New York, NY : IEEE, 1964 |g 55(2017), 1, Seite 261-271 |w (DE-627)129601667 |w (DE-600)241439-9 |w (DE-576)015095282 |x 0196-2892 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2017 |g number:1 |g pages:261-271 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TGRS.2016.2604861 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7572894 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 55 |j 2017 |e 1 |h 261-271 |
author_variant |
m y my |
---|---|
matchkey_str |
article:01962892:2017----::aiainfoopeisaileorltoosredrneut |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TGRS.2016.2604861 doi PQ20170206 (DE-627)OLC198767037X (DE-599)GBVOLC198767037X (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve DE-627 ger DE-627 rakwb eng 620 550 DNB Yoon, Moonseok verfasserin aut Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research Kim, Dongwoo oth Lee, Jiyun oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 55(2017), 1, Seite 261-271 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:55 year:2017 number:1 pages:261-271 http://dx.doi.org/10.1109/TGRS.2016.2604861 Volltext http://ieeexplore.ieee.org/document/7572894 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 55 2017 1 261-271 |
spelling |
10.1109/TGRS.2016.2604861 doi PQ20170206 (DE-627)OLC198767037X (DE-599)GBVOLC198767037X (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve DE-627 ger DE-627 rakwb eng 620 550 DNB Yoon, Moonseok verfasserin aut Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research Kim, Dongwoo oth Lee, Jiyun oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 55(2017), 1, Seite 261-271 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:55 year:2017 number:1 pages:261-271 http://dx.doi.org/10.1109/TGRS.2016.2604861 Volltext http://ieeexplore.ieee.org/document/7572894 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 55 2017 1 261-271 |
allfields_unstemmed |
10.1109/TGRS.2016.2604861 doi PQ20170206 (DE-627)OLC198767037X (DE-599)GBVOLC198767037X (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve DE-627 ger DE-627 rakwb eng 620 550 DNB Yoon, Moonseok verfasserin aut Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research Kim, Dongwoo oth Lee, Jiyun oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 55(2017), 1, Seite 261-271 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:55 year:2017 number:1 pages:261-271 http://dx.doi.org/10.1109/TGRS.2016.2604861 Volltext http://ieeexplore.ieee.org/document/7572894 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 55 2017 1 261-271 |
allfieldsGer |
10.1109/TGRS.2016.2604861 doi PQ20170206 (DE-627)OLC198767037X (DE-599)GBVOLC198767037X (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve DE-627 ger DE-627 rakwb eng 620 550 DNB Yoon, Moonseok verfasserin aut Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research Kim, Dongwoo oth Lee, Jiyun oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 55(2017), 1, Seite 261-271 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:55 year:2017 number:1 pages:261-271 http://dx.doi.org/10.1109/TGRS.2016.2604861 Volltext http://ieeexplore.ieee.org/document/7572894 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 55 2017 1 261-271 |
allfieldsSound |
10.1109/TGRS.2016.2604861 doi PQ20170206 (DE-627)OLC198767037X (DE-599)GBVOLC198767037X (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve DE-627 ger DE-627 rakwb eng 620 550 DNB Yoon, Moonseok verfasserin aut Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research Kim, Dongwoo oth Lee, Jiyun oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 55(2017), 1, Seite 261-271 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:55 year:2017 number:1 pages:261-271 http://dx.doi.org/10.1109/TGRS.2016.2604861 Volltext http://ieeexplore.ieee.org/document/7572894 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 AR 55 2017 1 261-271 |
language |
English |
source |
Enthalten in IEEE transactions on geoscience and remote sensing 55(2017), 1, Seite 261-271 volume:55 year:2017 number:1 pages:261-271 |
sourceStr |
Enthalten in IEEE transactions on geoscience and remote sensing 55(2017), 1, Seite 261-271 volume:55 year:2017 number:1 pages:261-271 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on geoscience and remote sensing |
authorswithroles_txt_mv |
Yoon, Moonseok @@aut@@ Kim, Dongwoo @@oth@@ Lee, Jiyun @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129601667 |
dewey-sort |
3620 |
id |
OLC198767037X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198767037X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715011822.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TGRS.2016.2604861</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198767037X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198767037X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoon, Moonseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Navigation Satellite Systems (GNSS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decorrelation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equatorial plasma bubble (EPB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionospheric spatial decorrelation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionospheric remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma (Ionized gases)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Dongwoo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jiyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on geoscience and remote sensing</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">55(2017), 1, Seite 261-271</subfield><subfield code="w">(DE-627)129601667</subfield><subfield code="w">(DE-600)241439-9</subfield><subfield code="w">(DE-576)015095282</subfield><subfield code="x">0196-2892</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:261-271</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TGRS.2016.2604861</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7572894</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">261-271</subfield></datafield></record></collection>
|
author |
Yoon, Moonseok |
spellingShingle |
Yoon, Moonseok ddc 620 misc Global Navigation Satellite Systems (GNSS) misc Decorrelation misc Frequency measurement misc Measurement uncertainty misc Equatorial plasma bubble (EPB) misc ionospheric spatial decorrelation misc Plasmas misc Satellites misc ionospheric remote sensing misc Noise measurement misc Receivers misc High temperature plasmas misc Research misc Plasma (Ionized gases) misc Ionospheric research Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events |
authorStr |
Yoon, Moonseok |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601667 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0196-2892 |
topic_title |
620 550 DNB Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events Global Navigation Satellite Systems (GNSS) Decorrelation Frequency measurement Measurement uncertainty Equatorial plasma bubble (EPB) ionospheric spatial decorrelation Plasmas Satellites ionospheric remote sensing Noise measurement Receivers High temperature plasmas Research Plasma (Ionized gases) Ionospheric research |
topic |
ddc 620 misc Global Navigation Satellite Systems (GNSS) misc Decorrelation misc Frequency measurement misc Measurement uncertainty misc Equatorial plasma bubble (EPB) misc ionospheric spatial decorrelation misc Plasmas misc Satellites misc ionospheric remote sensing misc Noise measurement misc Receivers misc High temperature plasmas misc Research misc Plasma (Ionized gases) misc Ionospheric research |
topic_unstemmed |
ddc 620 misc Global Navigation Satellite Systems (GNSS) misc Decorrelation misc Frequency measurement misc Measurement uncertainty misc Equatorial plasma bubble (EPB) misc ionospheric spatial decorrelation misc Plasmas misc Satellites misc ionospheric remote sensing misc Noise measurement misc Receivers misc High temperature plasmas misc Research misc Plasma (Ionized gases) misc Ionospheric research |
topic_browse |
ddc 620 misc Global Navigation Satellite Systems (GNSS) misc Decorrelation misc Frequency measurement misc Measurement uncertainty misc Equatorial plasma bubble (EPB) misc ionospheric spatial decorrelation misc Plasmas misc Satellites misc ionospheric remote sensing misc Noise measurement misc Receivers misc High temperature plasmas misc Research misc Plasma (Ionized gases) misc Ionospheric research |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d k dk j l jl |
hierarchy_parent_title |
IEEE transactions on geoscience and remote sensing |
hierarchy_parent_id |
129601667 |
dewey-tens |
620 - Engineering 550 - Earth sciences & geology |
hierarchy_top_title |
IEEE transactions on geoscience and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 |
title |
Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events |
ctrlnum |
(DE-627)OLC198767037X (DE-599)GBVOLC198767037X (PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0 (KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve |
title_full |
Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events |
author_sort |
Yoon, Moonseok |
journal |
IEEE transactions on geoscience and remote sensing |
journalStr |
IEEE transactions on geoscience and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
261 |
author_browse |
Yoon, Moonseok |
container_volume |
55 |
class |
620 550 DNB |
format_se |
Aufsätze |
author-letter |
Yoon, Moonseok |
doi_str_mv |
10.1109/TGRS.2016.2604861 |
dewey-full |
620 550 |
title_sort |
validation of ionospheric spatial decorrelation observed during equatorial plasma bubble events |
title_auth |
Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events |
abstract |
A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. |
abstractGer |
A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. |
abstract_unstemmed |
A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 |
container_issue |
1 |
title_short |
Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events |
url |
http://dx.doi.org/10.1109/TGRS.2016.2604861 http://ieeexplore.ieee.org/document/7572894 |
remote_bool |
false |
author2 |
Kim, Dongwoo Lee, Jiyun |
author2Str |
Kim, Dongwoo Lee, Jiyun |
ppnlink |
129601667 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TGRS.2016.2604861 |
up_date |
2024-07-03T14:52:48.774Z |
_version_ |
1803569981057662977 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198767037X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715011822.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TGRS.2016.2604861</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198767037X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198767037X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1473-104a5fe82424abc4bf91767b7711b2545913db38246e036163c7faf99f7b5a5f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0048677920170000055000100261validationofionosphericspatialdecorrelationobserve</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoon, Moonseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of Ionospheric Spatial Decorrelation Observed During Equatorial Plasma Bubble Events</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A postprocessing methodology is developed to validate abnormal ionospheric spatial decorrelation observed during the equatorial plasma bubble (EPB) events. While the Global Navigation Satellite System (GNSS) remote sensing techniques have been used to measure the ionospheric gradients, the measurements can be easily corrupted during the ionospheric disturbances. Extremely large ionospheric gradients are required to be validated before being declared real ionospheric events as opposed to the artifacts of erroneous measurements. The use of existing methods is however limited due to the small size of EPBs compared with the baseline distances between GNSS network stations in equatorial regions. This paper proposes a new validation procedure which utilizes a time-step method to estimate gradients over any short distance. Equatorial anomaly events are visualized in multiple time series by combining all available sources, including severe gradients observed from the multiple widely spread stations, the estimated EPB and known satellite motions, and the known station locations. A similar ionospheric pattern over multiple station-satellite pairs supports the fact that they are impacted by the same EPB at different times and locations. An extreme ionospheric gradient of 3.09 TECU/km observed in the Brazilian region during the December 31, 2013 EPB event is validated to be real using this methodology. The results demonstrate the effectiveness of the methodology for validating EPB-induced ionospheric spatial decorrelation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Navigation Satellite Systems (GNSS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decorrelation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equatorial plasma bubble (EPB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionospheric spatial decorrelation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionospheric remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Receivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma (Ionized gases)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Dongwoo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jiyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on geoscience and remote sensing</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">55(2017), 1, Seite 261-271</subfield><subfield code="w">(DE-627)129601667</subfield><subfield code="w">(DE-600)241439-9</subfield><subfield code="w">(DE-576)015095282</subfield><subfield code="x">0196-2892</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:261-271</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TGRS.2016.2604861</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7572894</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">261-271</subfield></datafield></record></collection>
|
score |
7.4007006 |