Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure
The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical a...
Ausführliche Beschreibung
Autor*in: |
Sethi, Jatin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
Enthalten in: European polymer journal - Oxford : Elsevier, 1965, 86(2017), Seite 188-199 |
---|---|
Übergeordnetes Werk: |
volume:86 ; year:2017 ; pages:188-199 |
Links: |
---|
DOI / URN: |
10.1016/j.eurpolymj.2016.11.031 |
---|
Katalog-ID: |
OLC1987830350 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1987830350 | ||
003 | DE-627 | ||
005 | 20230512024131.0 | ||
007 | tu | ||
008 | 170207s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eurpolymj.2016.11.031 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1987830350 | ||
035 | |a (DE-599)GBVOLC1987830350 | ||
035 | |a (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 | ||
035 | |a (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q DNB |
084 | |a 35.80 |2 bkl | ||
100 | 1 | |a Sethi, Jatin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. | ||
700 | 1 | |a Illikainen, Mirja |4 oth | |
700 | 1 | |a Sain, Mohini |4 oth | |
700 | 1 | |a Oksman, Kristiina |4 oth | |
773 | 0 | 8 | |i Enthalten in |t European polymer journal |d Oxford : Elsevier, 1965 |g 86(2017), Seite 188-199 |w (DE-627)129594008 |w (DE-600)240481-3 |w (DE-576)015086860 |x 0014-3057 |7 nnns |
773 | 1 | 8 | |g volume:86 |g year:2017 |g pages:188-199 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 |3 Volltext |
856 | 4 | 2 | |u http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 35.80 |q AVZ |
951 | |a AR | ||
952 | |d 86 |j 2017 |h 188-199 |
author_variant |
j s js |
---|---|
matchkey_str |
article:00143057:2017----::oyatccdoyrtaelnrifrewtcluoeaorsasiheinepnta |
hierarchy_sort_str |
2017 |
bklnumber |
35.80 |
publishDate |
2017 |
allfields |
10.1016/j.eurpolymj.2016.11.031 doi PQ20170301 (DE-627)OLC1987830350 (DE-599)GBVOLC1987830350 (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu DE-627 ger DE-627 rakwb eng 670 DNB 35.80 bkl Sethi, Jatin verfasserin aut Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. Illikainen, Mirja oth Sain, Mohini oth Oksman, Kristiina oth Enthalten in European polymer journal Oxford : Elsevier, 1965 86(2017), Seite 188-199 (DE-627)129594008 (DE-600)240481-3 (DE-576)015086860 0014-3057 nnns volume:86 year:2017 pages:188-199 http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 Volltext http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ AR 86 2017 188-199 |
spelling |
10.1016/j.eurpolymj.2016.11.031 doi PQ20170301 (DE-627)OLC1987830350 (DE-599)GBVOLC1987830350 (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu DE-627 ger DE-627 rakwb eng 670 DNB 35.80 bkl Sethi, Jatin verfasserin aut Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. Illikainen, Mirja oth Sain, Mohini oth Oksman, Kristiina oth Enthalten in European polymer journal Oxford : Elsevier, 1965 86(2017), Seite 188-199 (DE-627)129594008 (DE-600)240481-3 (DE-576)015086860 0014-3057 nnns volume:86 year:2017 pages:188-199 http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 Volltext http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ AR 86 2017 188-199 |
allfields_unstemmed |
10.1016/j.eurpolymj.2016.11.031 doi PQ20170301 (DE-627)OLC1987830350 (DE-599)GBVOLC1987830350 (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu DE-627 ger DE-627 rakwb eng 670 DNB 35.80 bkl Sethi, Jatin verfasserin aut Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. Illikainen, Mirja oth Sain, Mohini oth Oksman, Kristiina oth Enthalten in European polymer journal Oxford : Elsevier, 1965 86(2017), Seite 188-199 (DE-627)129594008 (DE-600)240481-3 (DE-576)015086860 0014-3057 nnns volume:86 year:2017 pages:188-199 http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 Volltext http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ AR 86 2017 188-199 |
allfieldsGer |
10.1016/j.eurpolymj.2016.11.031 doi PQ20170301 (DE-627)OLC1987830350 (DE-599)GBVOLC1987830350 (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu DE-627 ger DE-627 rakwb eng 670 DNB 35.80 bkl Sethi, Jatin verfasserin aut Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. Illikainen, Mirja oth Sain, Mohini oth Oksman, Kristiina oth Enthalten in European polymer journal Oxford : Elsevier, 1965 86(2017), Seite 188-199 (DE-627)129594008 (DE-600)240481-3 (DE-576)015086860 0014-3057 nnns volume:86 year:2017 pages:188-199 http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 Volltext http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ AR 86 2017 188-199 |
allfieldsSound |
10.1016/j.eurpolymj.2016.11.031 doi PQ20170301 (DE-627)OLC1987830350 (DE-599)GBVOLC1987830350 (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu DE-627 ger DE-627 rakwb eng 670 DNB 35.80 bkl Sethi, Jatin verfasserin aut Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. Illikainen, Mirja oth Sain, Mohini oth Oksman, Kristiina oth Enthalten in European polymer journal Oxford : Elsevier, 1965 86(2017), Seite 188-199 (DE-627)129594008 (DE-600)240481-3 (DE-576)015086860 0014-3057 nnns volume:86 year:2017 pages:188-199 http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 Volltext http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 35.80 AVZ AR 86 2017 188-199 |
language |
English |
source |
Enthalten in European polymer journal 86(2017), Seite 188-199 volume:86 year:2017 pages:188-199 |
sourceStr |
Enthalten in European polymer journal 86(2017), Seite 188-199 volume:86 year:2017 pages:188-199 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
European polymer journal |
authorswithroles_txt_mv |
Sethi, Jatin @@aut@@ Illikainen, Mirja @@oth@@ Sain, Mohini @@oth@@ Oksman, Kristiina @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129594008 |
dewey-sort |
3670 |
id |
OLC1987830350 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987830350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512024131.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eurpolymj.2016.11.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987830350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987830350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sethi, Jatin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Illikainen, Mirja</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sain, Mohini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oksman, Kristiina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European polymer journal</subfield><subfield code="d">Oxford : Elsevier, 1965</subfield><subfield code="g">86(2017), Seite 188-199</subfield><subfield code="w">(DE-627)129594008</subfield><subfield code="w">(DE-600)240481-3</subfield><subfield code="w">(DE-576)015086860</subfield><subfield code="x">0014-3057</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:188-199</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2017</subfield><subfield code="h">188-199</subfield></datafield></record></collection>
|
author |
Sethi, Jatin |
spellingShingle |
Sethi, Jatin ddc 670 bkl 35.80 Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
authorStr |
Sethi, Jatin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129594008 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0014-3057 |
topic_title |
670 DNB 35.80 bkl Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
topic |
ddc 670 bkl 35.80 |
topic_unstemmed |
ddc 670 bkl 35.80 |
topic_browse |
ddc 670 bkl 35.80 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m i mi m s ms k o ko |
hierarchy_parent_title |
European polymer journal |
hierarchy_parent_id |
129594008 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
European polymer journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129594008 (DE-600)240481-3 (DE-576)015086860 |
title |
Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
ctrlnum |
(DE-627)OLC1987830350 (DE-599)GBVOLC1987830350 (PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250 (KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu |
title_full |
Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
author_sort |
Sethi, Jatin |
journal |
European polymer journal |
journalStr |
European polymer journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
188 |
author_browse |
Sethi, Jatin |
container_volume |
86 |
class |
670 DNB 35.80 bkl |
format_se |
Aufsätze |
author-letter |
Sethi, Jatin |
doi_str_mv |
10.1016/j.eurpolymj.2016.11.031 |
dewey-full |
670 |
title_sort |
polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (s-ipn) structure |
title_auth |
Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
abstract |
The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. |
abstractGer |
The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. |
abstract_unstemmed |
The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
title_short |
Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure |
url |
http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031 http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140 |
remote_bool |
false |
author2 |
Illikainen, Mirja Sain, Mohini Oksman, Kristiina |
author2Str |
Illikainen, Mirja Sain, Mohini Oksman, Kristiina |
ppnlink |
129594008 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.eurpolymj.2016.11.031 |
up_date |
2024-07-03T15:29:30.461Z |
_version_ |
1803572289695907840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987830350</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512024131.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eurpolymj.2016.11.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987830350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987830350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1453-39639f95db2da8ba3cc1fa60a7b5dbc33aa511e5e9563181cc2c3d0b85aa2e250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0057485620170000086000000188polylacticacidpolyurethaneblendreinforcedwithcellu</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sethi, Jatin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55 °C up to 100 °C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Illikainen, Mirja</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sain, Mohini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oksman, Kristiina</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European polymer journal</subfield><subfield code="d">Oxford : Elsevier, 1965</subfield><subfield code="g">86(2017), Seite 188-199</subfield><subfield code="w">(DE-627)129594008</subfield><subfield code="w">(DE-600)240481-3</subfield><subfield code="w">(DE-576)015086860</subfield><subfield code="x">0014-3057</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:188-199</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.eurpolymj.2016.11.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61140</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2017</subfield><subfield code="h">188-199</subfield></datafield></record></collection>
|
score |
7.401127 |