A computational framework for scale‐bridging in multi‐scale simulations
A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operati...
Ausführliche Beschreibung
Autor*in: |
Knap, J [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal for numerical methods in engineering - Chichester [u.a.] : Wiley, 1969, 108(2016), 13, Seite 1649-1666 |
---|---|
Übergeordnetes Werk: |
volume:108 ; year:2016 ; number:13 ; pages:1649-1666 |
Links: |
---|
DOI / URN: |
10.1002/nme.5270 |
---|
Katalog-ID: |
OLC1987971752 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1987971752 | ||
003 | DE-627 | ||
005 | 20220220112601.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/nme.5270 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1987971752 | ||
035 | |a (DE-599)GBVOLC1987971752 | ||
035 | |a (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 | ||
035 | |a (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Knap, J |e verfasserin |4 aut | |
245 | 1 | 2 | |a A computational framework for scale‐bridging in multi‐scale simulations |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. | ||
650 | 4 | |a finite element | |
650 | 4 | |a distributed multi‐scale simulation | |
650 | 4 | |a multi‐scale modeling | |
650 | 4 | |a scale‐bridging | |
700 | 1 | |a Spear, C |4 oth | |
700 | 1 | |a Leiter, K |4 oth | |
700 | 1 | |a Becker, R |4 oth | |
700 | 1 | |a Powell, D |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal for numerical methods in engineering |d Chichester [u.a.] : Wiley, 1969 |g 108(2016), 13, Seite 1649-1666 |w (DE-627)129601217 |w (DE-600)241381-4 |w (DE-576)015094812 |x 0029-5981 |7 nnns |
773 | 1 | 8 | |g volume:108 |g year:2016 |g number:13 |g pages:1649-1666 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/nme.5270 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1845442465 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.03 |q AVZ |
951 | |a AR | ||
952 | |d 108 |j 2016 |e 13 |h 1649-1666 |
author_variant |
j k jk |
---|---|
matchkey_str |
article:00295981:2016----::cmuainlrmwrfrclbigniml |
hierarchy_sort_str |
2016 |
bklnumber |
50.03 |
publishDate |
2016 |
allfields |
10.1002/nme.5270 doi PQ20170206 (DE-627)OLC1987971752 (DE-599)GBVOLC1987971752 (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Knap, J verfasserin aut A computational framework for scale‐bridging in multi‐scale simulations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging Spear, C oth Leiter, K oth Becker, R oth Powell, D oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 108(2016), 13, Seite 1649-1666 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:108 year:2016 number:13 pages:1649-1666 http://dx.doi.org/10.1002/nme.5270 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract http://search.proquest.com/docview/1845442465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 108 2016 13 1649-1666 |
spelling |
10.1002/nme.5270 doi PQ20170206 (DE-627)OLC1987971752 (DE-599)GBVOLC1987971752 (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Knap, J verfasserin aut A computational framework for scale‐bridging in multi‐scale simulations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging Spear, C oth Leiter, K oth Becker, R oth Powell, D oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 108(2016), 13, Seite 1649-1666 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:108 year:2016 number:13 pages:1649-1666 http://dx.doi.org/10.1002/nme.5270 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract http://search.proquest.com/docview/1845442465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 108 2016 13 1649-1666 |
allfields_unstemmed |
10.1002/nme.5270 doi PQ20170206 (DE-627)OLC1987971752 (DE-599)GBVOLC1987971752 (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Knap, J verfasserin aut A computational framework for scale‐bridging in multi‐scale simulations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging Spear, C oth Leiter, K oth Becker, R oth Powell, D oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 108(2016), 13, Seite 1649-1666 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:108 year:2016 number:13 pages:1649-1666 http://dx.doi.org/10.1002/nme.5270 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract http://search.proquest.com/docview/1845442465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 108 2016 13 1649-1666 |
allfieldsGer |
10.1002/nme.5270 doi PQ20170206 (DE-627)OLC1987971752 (DE-599)GBVOLC1987971752 (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Knap, J verfasserin aut A computational framework for scale‐bridging in multi‐scale simulations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging Spear, C oth Leiter, K oth Becker, R oth Powell, D oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 108(2016), 13, Seite 1649-1666 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:108 year:2016 number:13 pages:1649-1666 http://dx.doi.org/10.1002/nme.5270 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract http://search.proquest.com/docview/1845442465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 108 2016 13 1649-1666 |
allfieldsSound |
10.1002/nme.5270 doi PQ20170206 (DE-627)OLC1987971752 (DE-599)GBVOLC1987971752 (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Knap, J verfasserin aut A computational framework for scale‐bridging in multi‐scale simulations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging Spear, C oth Leiter, K oth Becker, R oth Powell, D oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 108(2016), 13, Seite 1649-1666 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:108 year:2016 number:13 pages:1649-1666 http://dx.doi.org/10.1002/nme.5270 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract http://search.proquest.com/docview/1845442465 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 108 2016 13 1649-1666 |
language |
English |
source |
Enthalten in International journal for numerical methods in engineering 108(2016), 13, Seite 1649-1666 volume:108 year:2016 number:13 pages:1649-1666 |
sourceStr |
Enthalten in International journal for numerical methods in engineering 108(2016), 13, Seite 1649-1666 volume:108 year:2016 number:13 pages:1649-1666 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal for numerical methods in engineering |
authorswithroles_txt_mv |
Knap, J @@aut@@ Spear, C @@oth@@ Leiter, K @@oth@@ Becker, R @@oth@@ Powell, D @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129601217 |
dewey-sort |
3510 |
id |
OLC1987971752 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987971752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220112601.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nme.5270</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987971752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987971752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knap, J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A computational framework for scale‐bridging in multi‐scale simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed multi‐scale simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi‐scale modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scale‐bridging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spear, C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leiter, K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Becker, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Powell, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal for numerical methods in engineering</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1969</subfield><subfield code="g">108(2016), 13, Seite 1649-1666</subfield><subfield code="w">(DE-627)129601217</subfield><subfield code="w">(DE-600)241381-4</subfield><subfield code="w">(DE-576)015094812</subfield><subfield code="x">0029-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:1649-1666</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/nme.5270</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1845442465</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="h">1649-1666</subfield></datafield></record></collection>
|
author |
Knap, J |
spellingShingle |
Knap, J ddc 510 bkl 50.03 misc finite element misc distributed multi‐scale simulation misc multi‐scale modeling misc scale‐bridging A computational framework for scale‐bridging in multi‐scale simulations |
authorStr |
Knap, J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601217 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0029-5981 |
topic_title |
510 DNB 50.03 bkl A computational framework for scale‐bridging in multi‐scale simulations finite element distributed multi‐scale simulation multi‐scale modeling scale‐bridging |
topic |
ddc 510 bkl 50.03 misc finite element misc distributed multi‐scale simulation misc multi‐scale modeling misc scale‐bridging |
topic_unstemmed |
ddc 510 bkl 50.03 misc finite element misc distributed multi‐scale simulation misc multi‐scale modeling misc scale‐bridging |
topic_browse |
ddc 510 bkl 50.03 misc finite element misc distributed multi‐scale simulation misc multi‐scale modeling misc scale‐bridging |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c s cs k l kl r b rb d p dp |
hierarchy_parent_title |
International journal for numerical methods in engineering |
hierarchy_parent_id |
129601217 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal for numerical methods in engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 |
title |
A computational framework for scale‐bridging in multi‐scale simulations |
ctrlnum |
(DE-627)OLC1987971752 (DE-599)GBVOLC1987971752 (PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3 (KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale |
title_full |
A computational framework for scale‐bridging in multi‐scale simulations |
author_sort |
Knap, J |
journal |
International journal for numerical methods in engineering |
journalStr |
International journal for numerical methods in engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1649 |
author_browse |
Knap, J |
container_volume |
108 |
class |
510 DNB 50.03 bkl |
format_se |
Aufsätze |
author-letter |
Knap, J |
doi_str_mv |
10.1002/nme.5270 |
dewey-full |
510 |
title_sort |
computational framework for scale‐bridging in multi‐scale simulations |
title_auth |
A computational framework for scale‐bridging in multi‐scale simulations |
abstract |
A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. |
abstractGer |
A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. |
abstract_unstemmed |
A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
13 |
title_short |
A computational framework for scale‐bridging in multi‐scale simulations |
url |
http://dx.doi.org/10.1002/nme.5270 http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract http://search.proquest.com/docview/1845442465 |
remote_bool |
false |
author2 |
Spear, C Leiter, K Becker, R Powell, D |
author2Str |
Spear, C Leiter, K Becker, R Powell, D |
ppnlink |
129601217 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/nme.5270 |
up_date |
2024-07-03T16:03:08.326Z |
_version_ |
1803574405581766656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1987971752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220112601.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nme.5270</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1987971752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1987971752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1914-da4bab93219f092f4610a002009e60acbdf7d53d311a658d9d9c62ea82f9fd9b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0065660720160000108001301649computationalframeworkforscalebridginginmultiscale</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knap, J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A computational framework for scale‐bridging in multi‐scale simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A computational framework for scale‐bridging in multi‐scale simulations is presented. The framework enables seamless combination of at‐scale models into highly dynamic hierarchies to build a multi‐scale model. Its centerpiece is formulated as a standalone module capable of fully asynchronous operation. We assess its feasibility and performance for a two‐scale model applied to two challenging test problems from impact physics. We find that the computational cost associated with using the framework may, as expected, become substantial. However, the framework has the ability of effortlessly combining at‐scale models to render complex multi‐scale models. The main source of the computational inefficiency of the framework is related to poor load balancing of the lower‐scale model evaluation We demonstrate that the load balancing can be efficiently addressed by recourse to conventional load‐balancing strategies. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed multi‐scale simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi‐scale modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scale‐bridging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spear, C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leiter, K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Becker, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Powell, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal for numerical methods in engineering</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1969</subfield><subfield code="g">108(2016), 13, Seite 1649-1666</subfield><subfield code="w">(DE-627)129601217</subfield><subfield code="w">(DE-600)241381-4</subfield><subfield code="w">(DE-576)015094812</subfield><subfield code="x">0029-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:1649-1666</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/nme.5270</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/nme.5270/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1845442465</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield><subfield code="h">1649-1666</subfield></datafield></record></collection>
|
score |
7.4008636 |