Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities
We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd.
Autor*in: |
Kubo, M [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
elliptic quasi‐variational inequalities |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical methods in the applied sciences - Chichester, West Sussex : Wiley, 1979, 39(2016), 18, Seite 5626-5635 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2016 ; number:18 ; pages:5626-5635 |
Links: |
---|
DOI / URN: |
10.1002/mma.3948 |
---|
Katalog-ID: |
OLC1988318114 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1988318114 | ||
003 | DE-627 | ||
005 | 20220220080906.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/mma.3948 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1988318114 | ||
035 | |a (DE-599)GBVOLC1988318114 | ||
035 | |a (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 | ||
035 | |a (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.80 |2 bkl | ||
100 | 1 | |a Kubo, M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. | ||
650 | 4 | |a elliptic quasi‐variational inequalities | |
650 | 4 | |a elliptic variational inequalities | |
650 | 4 | |a subdifferential operators | |
700 | 1 | |a Murase, Y |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Mathematical methods in the applied sciences |d Chichester, West Sussex : Wiley, 1979 |g 39(2016), 18, Seite 5626-5635 |w (DE-627)130619051 |w (DE-600)795328-8 |w (DE-576)016125967 |x 0170-4214 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2016 |g number:18 |g pages:5626-5635 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/mma.3948 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1845076549 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 31.80 |q AVZ |
951 | |a AR | ||
952 | |d 39 |j 2016 |e 18 |h 5626-5635 |
author_variant |
m k mk |
---|---|
matchkey_str |
article:01704214:2016----::ussbifrnilprtrpraholitcaitoaadusv |
hierarchy_sort_str |
2016 |
bklnumber |
31.80 |
publishDate |
2016 |
allfields |
10.1002/mma.3948 doi PQ20170501 (DE-627)OLC1988318114 (DE-599)GBVOLC1988318114 (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Kubo, M verfasserin aut Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators Murase, Y oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 39(2016), 18, Seite 5626-5635 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:39 year:2016 number:18 pages:5626-5635 http://dx.doi.org/10.1002/mma.3948 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract http://search.proquest.com/docview/1845076549 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 39 2016 18 5626-5635 |
spelling |
10.1002/mma.3948 doi PQ20170501 (DE-627)OLC1988318114 (DE-599)GBVOLC1988318114 (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Kubo, M verfasserin aut Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators Murase, Y oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 39(2016), 18, Seite 5626-5635 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:39 year:2016 number:18 pages:5626-5635 http://dx.doi.org/10.1002/mma.3948 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract http://search.proquest.com/docview/1845076549 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 39 2016 18 5626-5635 |
allfields_unstemmed |
10.1002/mma.3948 doi PQ20170501 (DE-627)OLC1988318114 (DE-599)GBVOLC1988318114 (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Kubo, M verfasserin aut Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators Murase, Y oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 39(2016), 18, Seite 5626-5635 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:39 year:2016 number:18 pages:5626-5635 http://dx.doi.org/10.1002/mma.3948 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract http://search.proquest.com/docview/1845076549 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 39 2016 18 5626-5635 |
allfieldsGer |
10.1002/mma.3948 doi PQ20170501 (DE-627)OLC1988318114 (DE-599)GBVOLC1988318114 (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Kubo, M verfasserin aut Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators Murase, Y oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 39(2016), 18, Seite 5626-5635 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:39 year:2016 number:18 pages:5626-5635 http://dx.doi.org/10.1002/mma.3948 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract http://search.proquest.com/docview/1845076549 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 39 2016 18 5626-5635 |
allfieldsSound |
10.1002/mma.3948 doi PQ20170501 (DE-627)OLC1988318114 (DE-599)GBVOLC1988318114 (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari DE-627 ger DE-627 rakwb eng 510 DE-600 31.80 bkl Kubo, M verfasserin aut Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd. elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators Murase, Y oth Enthalten in Mathematical methods in the applied sciences Chichester, West Sussex : Wiley, 1979 39(2016), 18, Seite 5626-5635 (DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 0170-4214 nnns volume:39 year:2016 number:18 pages:5626-5635 http://dx.doi.org/10.1002/mma.3948 Volltext http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract http://search.proquest.com/docview/1845076549 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 31.80 AVZ AR 39 2016 18 5626-5635 |
language |
English |
source |
Enthalten in Mathematical methods in the applied sciences 39(2016), 18, Seite 5626-5635 volume:39 year:2016 number:18 pages:5626-5635 |
sourceStr |
Enthalten in Mathematical methods in the applied sciences 39(2016), 18, Seite 5626-5635 volume:39 year:2016 number:18 pages:5626-5635 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematical methods in the applied sciences |
authorswithroles_txt_mv |
Kubo, M @@aut@@ Murase, Y @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130619051 |
dewey-sort |
3510 |
id |
OLC1988318114 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988318114</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220080906.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/mma.3948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988318114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988318114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kubo, M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elliptic quasi‐variational inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elliptic variational inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subdifferential operators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murase, Y</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical methods in the applied sciences</subfield><subfield code="d">Chichester, West Sussex : Wiley, 1979</subfield><subfield code="g">39(2016), 18, Seite 5626-5635</subfield><subfield code="w">(DE-627)130619051</subfield><subfield code="w">(DE-600)795328-8</subfield><subfield code="w">(DE-576)016125967</subfield><subfield code="x">0170-4214</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:18</subfield><subfield code="g">pages:5626-5635</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/mma.3948</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1845076549</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2016</subfield><subfield code="e">18</subfield><subfield code="h">5626-5635</subfield></datafield></record></collection>
|
author |
Kubo, M |
spellingShingle |
Kubo, M ddc 510 bkl 31.80 misc elliptic quasi‐variational inequalities misc elliptic variational inequalities misc subdifferential operators Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
authorStr |
Kubo, M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130619051 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0170-4214 |
topic_title |
510 DE-600 31.80 bkl Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities elliptic quasi‐variational inequalities elliptic variational inequalities subdifferential operators |
topic |
ddc 510 bkl 31.80 misc elliptic quasi‐variational inequalities misc elliptic variational inequalities misc subdifferential operators |
topic_unstemmed |
ddc 510 bkl 31.80 misc elliptic quasi‐variational inequalities misc elliptic variational inequalities misc subdifferential operators |
topic_browse |
ddc 510 bkl 31.80 misc elliptic quasi‐variational inequalities misc elliptic variational inequalities misc subdifferential operators |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y m ym |
hierarchy_parent_title |
Mathematical methods in the applied sciences |
hierarchy_parent_id |
130619051 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematical methods in the applied sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130619051 (DE-600)795328-8 (DE-576)016125967 |
title |
Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
ctrlnum |
(DE-627)OLC1988318114 (DE-599)GBVOLC1988318114 (PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03 (KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari |
title_full |
Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
author_sort |
Kubo, M |
journal |
Mathematical methods in the applied sciences |
journalStr |
Mathematical methods in the applied sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
5626 |
author_browse |
Kubo, M |
container_volume |
39 |
class |
510 DE-600 31.80 bkl |
format_se |
Aufsätze |
author-letter |
Kubo, M |
doi_str_mv |
10.1002/mma.3948 |
dewey-full |
510 |
title_sort |
quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
title_auth |
Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
abstract |
We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. |
abstractGer |
We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. |
abstract_unstemmed |
We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4318 |
container_issue |
18 |
title_short |
Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities |
url |
http://dx.doi.org/10.1002/mma.3948 http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract http://search.proquest.com/docview/1845076549 |
remote_bool |
false |
author2 |
Murase, Y |
author2Str |
Murase, Y |
ppnlink |
130619051 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/mma.3948 |
up_date |
2024-07-03T17:25:12.935Z |
_version_ |
1803579569404379136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988318114</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220080906.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/mma.3948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988318114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988318114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1598-f3c471d7a9b4b191e18232eb0dd6bb28b3bc20cd2f6e385ca00223e53b3340c03</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0093427520160000039001805626quasisubdifferentialoperatorapproachtoellipticvari</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kubo, M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi‐subdifferential operator approach to elliptic variational and quasi‐variational inequalities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove an existence theorem for an abstract operator equation associated with a quasi‐subdifferential operator and then apply it to concrete elliptic variational and quasi‐variational inequalities. Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elliptic quasi‐variational inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">elliptic variational inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subdifferential operators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murase, Y</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical methods in the applied sciences</subfield><subfield code="d">Chichester, West Sussex : Wiley, 1979</subfield><subfield code="g">39(2016), 18, Seite 5626-5635</subfield><subfield code="w">(DE-627)130619051</subfield><subfield code="w">(DE-600)795328-8</subfield><subfield code="w">(DE-576)016125967</subfield><subfield code="x">0170-4214</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:18</subfield><subfield code="g">pages:5626-5635</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/mma.3948</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/mma.3948/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1845076549</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2016</subfield><subfield code="e">18</subfield><subfield code="h">5626-5635</subfield></datafield></record></collection>
|
score |
7.402323 |