Mean response estimation with missing response in the presence of high-dimensional covariates
This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model sp...
Ausführliche Beschreibung
Autor*in: |
Li, Yongjin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in statistics / Theory and methods - London : Taylor and Francis, 1982, 46(2017), 2, Seite 628-643 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2017 ; number:2 ; pages:628-643 |
Links: |
---|
DOI / URN: |
10.1080/03610926.2014.1002935 |
---|
Katalog-ID: |
OLC1988491088 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1988491088 | ||
003 | DE-627 | ||
005 | 20220221022811.0 | ||
007 | tu | ||
008 | 170207s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/03610926.2014.1002935 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1988491088 | ||
035 | |a (DE-599)GBVOLC1988491088 | ||
035 | |a (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 | ||
035 | |a (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Li, Yongjin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mean response estimation with missing response in the presence of high-dimensional covariates |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. | ||
540 | |a Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 | ||
650 | 4 | |a 62J02 | |
650 | 4 | |a Missing response | |
650 | 4 | |a Weighted-bandwidth | |
650 | 4 | |a Central mean subspace | |
650 | 4 | |a 62G05 | |
650 | 4 | |a Imputation | |
650 | 4 | |a 62H12 | |
650 | 4 | |a Kernel regression | |
650 | 4 | |a Economic models | |
650 | 4 | |a Methods | |
700 | 1 | |a Wang, Qihua |4 oth | |
700 | 1 | |a Zhu, Liping |4 oth | |
700 | 1 | |a Ding, Xiaobo |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Communications in statistics / Theory and methods |d London : Taylor and Francis, 1982 |g 46(2017), 2, Seite 628-643 |w (DE-627)129862290 |w (DE-600)283673-7 |w (DE-576)015173747 |x 0361-0926 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2017 |g number:2 |g pages:628-643 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/03610926.2014.1002935 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1828678809 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.73 |q AVZ |
951 | |a AR | ||
952 | |d 46 |j 2017 |e 2 |h 628-643 |
author_variant |
y l yl |
---|---|
matchkey_str |
article:03610926:2017----::enepnesiainihisnrsositersnefih |
hierarchy_sort_str |
2017 |
bklnumber |
31.73 |
publishDate |
2017 |
allfields |
10.1080/03610926.2014.1002935 doi PQ20170301 (DE-627)OLC1988491088 (DE-599)GBVOLC1988491088 (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Li, Yongjin verfasserin aut Mean response estimation with missing response in the presence of high-dimensional covariates 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods Wang, Qihua oth Zhu, Liping oth Ding, Xiaobo oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 2, Seite 628-643 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:2 pages:628-643 http://dx.doi.org/10.1080/03610926.2014.1002935 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 http://search.proquest.com/docview/1828678809 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 2 628-643 |
spelling |
10.1080/03610926.2014.1002935 doi PQ20170301 (DE-627)OLC1988491088 (DE-599)GBVOLC1988491088 (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Li, Yongjin verfasserin aut Mean response estimation with missing response in the presence of high-dimensional covariates 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods Wang, Qihua oth Zhu, Liping oth Ding, Xiaobo oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 2, Seite 628-643 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:2 pages:628-643 http://dx.doi.org/10.1080/03610926.2014.1002935 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 http://search.proquest.com/docview/1828678809 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 2 628-643 |
allfields_unstemmed |
10.1080/03610926.2014.1002935 doi PQ20170301 (DE-627)OLC1988491088 (DE-599)GBVOLC1988491088 (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Li, Yongjin verfasserin aut Mean response estimation with missing response in the presence of high-dimensional covariates 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods Wang, Qihua oth Zhu, Liping oth Ding, Xiaobo oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 2, Seite 628-643 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:2 pages:628-643 http://dx.doi.org/10.1080/03610926.2014.1002935 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 http://search.proquest.com/docview/1828678809 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 2 628-643 |
allfieldsGer |
10.1080/03610926.2014.1002935 doi PQ20170301 (DE-627)OLC1988491088 (DE-599)GBVOLC1988491088 (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Li, Yongjin verfasserin aut Mean response estimation with missing response in the presence of high-dimensional covariates 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods Wang, Qihua oth Zhu, Liping oth Ding, Xiaobo oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 2, Seite 628-643 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:2 pages:628-643 http://dx.doi.org/10.1080/03610926.2014.1002935 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 http://search.proquest.com/docview/1828678809 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 2 628-643 |
allfieldsSound |
10.1080/03610926.2014.1002935 doi PQ20170301 (DE-627)OLC1988491088 (DE-599)GBVOLC1988491088 (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres DE-627 ger DE-627 rakwb eng 510 DE-600 31.73 bkl Li, Yongjin verfasserin aut Mean response estimation with missing response in the presence of high-dimensional covariates 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017 62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods Wang, Qihua oth Zhu, Liping oth Ding, Xiaobo oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 46(2017), 2, Seite 628-643 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:46 year:2017 number:2 pages:628-643 http://dx.doi.org/10.1080/03610926.2014.1002935 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 http://search.proquest.com/docview/1828678809 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 46 2017 2 628-643 |
language |
English |
source |
Enthalten in Communications in statistics / Theory and methods 46(2017), 2, Seite 628-643 volume:46 year:2017 number:2 pages:628-643 |
sourceStr |
Enthalten in Communications in statistics / Theory and methods 46(2017), 2, Seite 628-643 volume:46 year:2017 number:2 pages:628-643 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Communications in statistics / Theory and methods |
authorswithroles_txt_mv |
Li, Yongjin @@aut@@ Wang, Qihua @@oth@@ Zhu, Liping @@oth@@ Ding, Xiaobo @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129862290 |
dewey-sort |
3510 |
id |
OLC1988491088 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988491088</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221022811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610926.2014.1002935</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988491088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988491088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yongjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mean response estimation with missing response in the presence of high-dimensional covariates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62J02</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Missing response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted-bandwidth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central mean subspace</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62G05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imputation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62H12</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qihua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Liping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Xiaobo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Theory and methods</subfield><subfield code="d">London : Taylor and Francis, 1982</subfield><subfield code="g">46(2017), 2, Seite 628-643</subfield><subfield code="w">(DE-627)129862290</subfield><subfield code="w">(DE-600)283673-7</subfield><subfield code="w">(DE-576)015173747</subfield><subfield code="x">0361-0926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:628-643</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610926.2014.1002935</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1828678809</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">628-643</subfield></datafield></record></collection>
|
author |
Li, Yongjin |
spellingShingle |
Li, Yongjin ddc 510 bkl 31.73 misc 62J02 misc Missing response misc Weighted-bandwidth misc Central mean subspace misc 62G05 misc Imputation misc 62H12 misc Kernel regression misc Economic models misc Methods Mean response estimation with missing response in the presence of high-dimensional covariates |
authorStr |
Li, Yongjin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129862290 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-0926 |
topic_title |
510 DE-600 31.73 bkl Mean response estimation with missing response in the presence of high-dimensional covariates 62J02 Missing response Weighted-bandwidth Central mean subspace 62G05 Imputation 62H12 Kernel regression Economic models Methods |
topic |
ddc 510 bkl 31.73 misc 62J02 misc Missing response misc Weighted-bandwidth misc Central mean subspace misc 62G05 misc Imputation misc 62H12 misc Kernel regression misc Economic models misc Methods |
topic_unstemmed |
ddc 510 bkl 31.73 misc 62J02 misc Missing response misc Weighted-bandwidth misc Central mean subspace misc 62G05 misc Imputation misc 62H12 misc Kernel regression misc Economic models misc Methods |
topic_browse |
ddc 510 bkl 31.73 misc 62J02 misc Missing response misc Weighted-bandwidth misc Central mean subspace misc 62G05 misc Imputation misc 62H12 misc Kernel regression misc Economic models misc Methods |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
q w qw l z lz x d xd |
hierarchy_parent_title |
Communications in statistics / Theory and methods |
hierarchy_parent_id |
129862290 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Communications in statistics / Theory and methods |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 |
title |
Mean response estimation with missing response in the presence of high-dimensional covariates |
ctrlnum |
(DE-627)OLC1988491088 (DE-599)GBVOLC1988491088 (PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30 (KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres |
title_full |
Mean response estimation with missing response in the presence of high-dimensional covariates |
author_sort |
Li, Yongjin |
journal |
Communications in statistics / Theory and methods |
journalStr |
Communications in statistics / Theory and methods |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
628 |
author_browse |
Li, Yongjin |
container_volume |
46 |
class |
510 DE-600 31.73 bkl |
format_se |
Aufsätze |
author-letter |
Li, Yongjin |
doi_str_mv |
10.1080/03610926.2014.1002935 |
dewey-full |
510 |
title_sort |
mean response estimation with missing response in the presence of high-dimensional covariates |
title_auth |
Mean response estimation with missing response in the presence of high-dimensional covariates |
abstract |
This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. |
abstractGer |
This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. |
abstract_unstemmed |
This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Mean response estimation with missing response in the presence of high-dimensional covariates |
url |
http://dx.doi.org/10.1080/03610926.2014.1002935 http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935 http://search.proquest.com/docview/1828678809 |
remote_bool |
false |
author2 |
Wang, Qihua Zhu, Liping Ding, Xiaobo |
author2Str |
Wang, Qihua Zhu, Liping Ding, Xiaobo |
ppnlink |
129862290 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/03610926.2014.1002935 |
up_date |
2024-07-03T18:04:09.043Z |
_version_ |
1803582019000598528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988491088</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221022811.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610926.2014.1002935</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988491088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988491088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1900-bfc70faef40e0d4a4342f00f7c79e46de7725e3400742a3809907b30f1da1ca30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108848320170000046000200628meanresponseestimationwithmissingresponseinthepres</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yongjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mean response estimation with missing response in the presence of high-dimensional covariates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies the problem of mean response estimation where missingness occurs to the response but multiple-dimensional covariates are observable. Two main challenges occur in this situation: curse of dimensionality and model specification. The non parametric imputation method relieves model specification but suffers curse of dimensionality, while some model-based methods such as inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW) methods are the opposite. We propose a unified non parametric method to overcome the two challenges with the aiding of sufficient dimension reduction. It imposes no parametric structure on propensity score or conditional mean response, and thus retains the non parametric flavor. Moreover, the estimator achieves the optimal efficiency that a double robust estimator can attain. Simulations were conducted and it demonstrates the excellent performances of our method in various situations.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Taylor & Francis Group, LLC 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62J02</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Missing response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted-bandwidth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central mean subspace</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62G05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imputation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62H12</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qihua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Liping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Xiaobo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Theory and methods</subfield><subfield code="d">London : Taylor and Francis, 1982</subfield><subfield code="g">46(2017), 2, Seite 628-643</subfield><subfield code="w">(DE-627)129862290</subfield><subfield code="w">(DE-600)283673-7</subfield><subfield code="w">(DE-576)015173747</subfield><subfield code="x">0361-0926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:628-643</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610926.2014.1002935</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610926.2014.1002935</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1828678809</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">628-643</subfield></datafield></record></collection>
|
score |
7.4004745 |