Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications
Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, inv...
Ausführliche Beschreibung
Autor*in: |
Isolan, Lorenzo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Radiation effects and defects in solids - Abingdon : Taylor & Francis, 1989, 171(2016), 9-10, Seite 808 |
---|---|
Übergeordnetes Werk: |
volume:171 ; year:2016 ; number:9-10 ; pages:808 |
Links: |
---|
DOI / URN: |
10.1080/10420150.2016.1266358 |
---|
Katalog-ID: |
OLC1988536278 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1988536278 | ||
003 | DE-627 | ||
005 | 20230715022233.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/10420150.2016.1266358 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1988536278 | ||
035 | |a (DE-599)GBVOLC1988536278 | ||
035 | |a (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 | ||
035 | |a (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
100 | 1 | |a Isolan, Lorenzo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. | ||
540 | |a Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 | ||
650 | 4 | |a activation products | |
650 | 4 | |a MCNP | |
650 | 4 | |a Accelerator | |
650 | 4 | |a radiation protection | |
650 | 4 | |a Monte Carlo | |
650 | 4 | |a Radiation therapy | |
700 | 1 | |a Sumini, Marco |4 oth | |
700 | 1 | |a Cucchi, Giorgio |4 oth | |
700 | 1 | |a Iori, Mauro |4 oth | |
700 | 1 | |a Sghedoni, Roberto |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Radiation effects and defects in solids |d Abingdon : Taylor & Francis, 1989 |g 171(2016), 9-10, Seite 808 |w (DE-627)130806498 |w (DE-600)1009746-6 |w (DE-576)023047054 |x 1042-0150 |7 nnns |
773 | 1 | 8 | |g volume:171 |g year:2016 |g number:9-10 |g pages:808 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/10420150.2016.1266358 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1853759799 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 171 |j 2016 |e 9-10 |h 808 |
author_variant |
l i li |
---|---|
matchkey_str |
article:10420150:2016----::otcroecmrotexeietlvlainfhatvtopoessnnlcrnierce |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1080/10420150.2016.1266358 doi PQ20170206 (DE-627)OLC1988536278 (DE-599)GBVOLC1988536278 (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth DE-627 ger DE-627 rakwb eng 530 620 DE-600 Isolan, Lorenzo verfasserin aut Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy Sumini, Marco oth Cucchi, Giorgio oth Iori, Mauro oth Sghedoni, Roberto oth Enthalten in Radiation effects and defects in solids Abingdon : Taylor & Francis, 1989 171(2016), 9-10, Seite 808 (DE-627)130806498 (DE-600)1009746-6 (DE-576)023047054 1042-0150 nnns volume:171 year:2016 number:9-10 pages:808 http://dx.doi.org/10.1080/10420150.2016.1266358 Volltext http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 http://search.proquest.com/docview/1853759799 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 171 2016 9-10 808 |
spelling |
10.1080/10420150.2016.1266358 doi PQ20170206 (DE-627)OLC1988536278 (DE-599)GBVOLC1988536278 (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth DE-627 ger DE-627 rakwb eng 530 620 DE-600 Isolan, Lorenzo verfasserin aut Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy Sumini, Marco oth Cucchi, Giorgio oth Iori, Mauro oth Sghedoni, Roberto oth Enthalten in Radiation effects and defects in solids Abingdon : Taylor & Francis, 1989 171(2016), 9-10, Seite 808 (DE-627)130806498 (DE-600)1009746-6 (DE-576)023047054 1042-0150 nnns volume:171 year:2016 number:9-10 pages:808 http://dx.doi.org/10.1080/10420150.2016.1266358 Volltext http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 http://search.proquest.com/docview/1853759799 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 171 2016 9-10 808 |
allfields_unstemmed |
10.1080/10420150.2016.1266358 doi PQ20170206 (DE-627)OLC1988536278 (DE-599)GBVOLC1988536278 (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth DE-627 ger DE-627 rakwb eng 530 620 DE-600 Isolan, Lorenzo verfasserin aut Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy Sumini, Marco oth Cucchi, Giorgio oth Iori, Mauro oth Sghedoni, Roberto oth Enthalten in Radiation effects and defects in solids Abingdon : Taylor & Francis, 1989 171(2016), 9-10, Seite 808 (DE-627)130806498 (DE-600)1009746-6 (DE-576)023047054 1042-0150 nnns volume:171 year:2016 number:9-10 pages:808 http://dx.doi.org/10.1080/10420150.2016.1266358 Volltext http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 http://search.proquest.com/docview/1853759799 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 171 2016 9-10 808 |
allfieldsGer |
10.1080/10420150.2016.1266358 doi PQ20170206 (DE-627)OLC1988536278 (DE-599)GBVOLC1988536278 (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth DE-627 ger DE-627 rakwb eng 530 620 DE-600 Isolan, Lorenzo verfasserin aut Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy Sumini, Marco oth Cucchi, Giorgio oth Iori, Mauro oth Sghedoni, Roberto oth Enthalten in Radiation effects and defects in solids Abingdon : Taylor & Francis, 1989 171(2016), 9-10, Seite 808 (DE-627)130806498 (DE-600)1009746-6 (DE-576)023047054 1042-0150 nnns volume:171 year:2016 number:9-10 pages:808 http://dx.doi.org/10.1080/10420150.2016.1266358 Volltext http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 http://search.proquest.com/docview/1853759799 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 171 2016 9-10 808 |
allfieldsSound |
10.1080/10420150.2016.1266358 doi PQ20170206 (DE-627)OLC1988536278 (DE-599)GBVOLC1988536278 (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth DE-627 ger DE-627 rakwb eng 530 620 DE-600 Isolan, Lorenzo verfasserin aut Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy Sumini, Marco oth Cucchi, Giorgio oth Iori, Mauro oth Sghedoni, Roberto oth Enthalten in Radiation effects and defects in solids Abingdon : Taylor & Francis, 1989 171(2016), 9-10, Seite 808 (DE-627)130806498 (DE-600)1009746-6 (DE-576)023047054 1042-0150 nnns volume:171 year:2016 number:9-10 pages:808 http://dx.doi.org/10.1080/10420150.2016.1266358 Volltext http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 http://search.proquest.com/docview/1853759799 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 171 2016 9-10 808 |
language |
English |
source |
Enthalten in Radiation effects and defects in solids 171(2016), 9-10, Seite 808 volume:171 year:2016 number:9-10 pages:808 |
sourceStr |
Enthalten in Radiation effects and defects in solids 171(2016), 9-10, Seite 808 volume:171 year:2016 number:9-10 pages:808 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Radiation effects and defects in solids |
authorswithroles_txt_mv |
Isolan, Lorenzo @@aut@@ Sumini, Marco @@oth@@ Cucchi, Giorgio @@oth@@ Iori, Mauro @@oth@@ Sghedoni, Roberto @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130806498 |
dewey-sort |
3530 |
id |
OLC1988536278 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988536278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715022233.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10420150.2016.1266358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988536278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988536278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isolan, Lorenzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">activation products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCNP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiation protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation therapy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumini, Marco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cucchi, Giorgio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iori, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sghedoni, Roberto</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation effects and defects in solids</subfield><subfield code="d">Abingdon : Taylor & Francis, 1989</subfield><subfield code="g">171(2016), 9-10, Seite 808</subfield><subfield code="w">(DE-627)130806498</subfield><subfield code="w">(DE-600)1009746-6</subfield><subfield code="w">(DE-576)023047054</subfield><subfield code="x">1042-0150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9-10</subfield><subfield code="g">pages:808</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/10420150.2016.1266358</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1853759799</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield><subfield code="j">2016</subfield><subfield code="e">9-10</subfield><subfield code="h">808</subfield></datafield></record></collection>
|
author |
Isolan, Lorenzo |
spellingShingle |
Isolan, Lorenzo ddc 530 misc activation products misc MCNP misc Accelerator misc radiation protection misc Monte Carlo misc Radiation therapy Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
authorStr |
Isolan, Lorenzo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130806498 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1042-0150 |
topic_title |
530 620 DE-600 Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications activation products MCNP Accelerator radiation protection Monte Carlo Radiation therapy |
topic |
ddc 530 misc activation products misc MCNP misc Accelerator misc radiation protection misc Monte Carlo misc Radiation therapy |
topic_unstemmed |
ddc 530 misc activation products misc MCNP misc Accelerator misc radiation protection misc Monte Carlo misc Radiation therapy |
topic_browse |
ddc 530 misc activation products misc MCNP misc Accelerator misc radiation protection misc Monte Carlo misc Radiation therapy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m s ms g c gc m i mi r s rs |
hierarchy_parent_title |
Radiation effects and defects in solids |
hierarchy_parent_id |
130806498 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Radiation effects and defects in solids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130806498 (DE-600)1009746-6 (DE-576)023047054 |
title |
Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
ctrlnum |
(DE-627)OLC1988536278 (DE-599)GBVOLC1988536278 (PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0 (KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth |
title_full |
Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
author_sort |
Isolan, Lorenzo |
journal |
Radiation effects and defects in solids |
journalStr |
Radiation effects and defects in solids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
808 |
author_browse |
Isolan, Lorenzo |
container_volume |
171 |
class |
530 620 DE-600 |
format_se |
Aufsätze |
author-letter |
Isolan, Lorenzo |
doi_str_mv |
10.1080/10420150.2016.1266358 |
dewey-full |
530 620 |
title_sort |
monte carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
title_auth |
Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
abstract |
Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. |
abstractGer |
Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. |
abstract_unstemmed |
Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
9-10 |
title_short |
Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications |
url |
http://dx.doi.org/10.1080/10420150.2016.1266358 http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358 http://search.proquest.com/docview/1853759799 |
remote_bool |
false |
author2 |
Sumini, Marco Cucchi, Giorgio Iori, Mauro Sghedoni, Roberto |
author2Str |
Sumini, Marco Cucchi, Giorgio Iori, Mauro Sghedoni, Roberto |
ppnlink |
130806498 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1080/10420150.2016.1266358 |
up_date |
2024-07-03T18:14:31.116Z |
_version_ |
1803582671283027968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988536278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715022233.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/10420150.2016.1266358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988536278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988536278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1082-6153656284a58dba77e0c361d9803c9454d807cd649fb7a1ef9e22e9ecafa75d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0111971020160000171000900808montecarlobenchmarkoftheexperimentalevaluationofth</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isolan, Lorenzo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monte Carlo benchmark of the experimental evaluation of the activation processes in an electron linear accelerator for radiotherapy applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Several kinds of isotopes are generated during radiotherapy treatments with high-energy electron sources due to the onset of many nuclear reactions. These isotopes are often unstable, can appear both in the device and in the treatment chamber materials and, as a consequence of the decay process, involving also gamma-ray emissions, some additional dose is given to the patient and to the radiotherapy unit staff. These effects have been experimentally monitored with a LaBr detector for gamma spectrometry. Then the measurement setup and data have been benchmarked through Monte Carlo (MC) simulations, with the MCNPX code, aiming to evaluate all kinds of activation, due to both photons and photoneutrons. All the MC activation estimates have been parameterized with respect to the 187 W produced in the primary collimator of the accelerator. The simulation results obtained with MCNPX have shown a good agreement with the experimental measurements. The results suggest a possible general approach to perform the activation analysis by coupling the experimental spectrometric measurements with MC calculations to properly identify photopeaks and source components.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">activation products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MCNP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiation protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation therapy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumini, Marco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cucchi, Giorgio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iori, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sghedoni, Roberto</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation effects and defects in solids</subfield><subfield code="d">Abingdon : Taylor & Francis, 1989</subfield><subfield code="g">171(2016), 9-10, Seite 808</subfield><subfield code="w">(DE-627)130806498</subfield><subfield code="w">(DE-600)1009746-6</subfield><subfield code="w">(DE-576)023047054</subfield><subfield code="x">1042-0150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9-10</subfield><subfield code="g">pages:808</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/10420150.2016.1266358</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/10420150.2016.1266358</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1853759799</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield><subfield code="j">2016</subfield><subfield code="e">9-10</subfield><subfield code="h">808</subfield></datafield></record></collection>
|
score |
7.4021244 |