Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core
In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is perfo...
Ausführliche Beschreibung
Autor*in: |
Ali, Rasha A. Hussein [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of lightwave technology - New York, NY : IEEE, 1983, 34(2016), 23, Seite 5423-5430 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2016 ; number:23 ; pages:5423-5430 |
Links: |
---|
DOI / URN: |
10.1109/JLT.2016.2615044 |
---|
Katalog-ID: |
OLC1988665205 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1988665205 | ||
003 | DE-627 | ||
005 | 20230715022648.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JLT.2016.2615044 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1988665205 | ||
035 | |a (DE-599)GBVOLC1988665205 | ||
035 | |a (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 | ||
035 | |a (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 620 |q DE-600 |
100 | 1 | |a Ali, Rasha A. Hussein |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. | ||
650 | 4 | |a Optical fibers | |
650 | 4 | |a nonlinearity | |
650 | 4 | |a finite element method | |
650 | 4 | |a photonic crystal fibers | |
650 | 4 | |a dispersion | |
650 | 4 | |a supercontinuum generation | |
650 | 4 | |a Nonlinear optics | |
650 | 4 | |a Optical fiber devices | |
650 | 4 | |a Optical fiber dispersion | |
650 | 4 | |a Silicon compounds | |
650 | 4 | |a Chalcogenide glass | |
650 | 4 | |a Glass | |
700 | 1 | |a Hameed, Mohamed Farhat O |4 oth | |
700 | 1 | |a Obayya, Salah S. A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of lightwave technology |d New York, NY : IEEE, 1983 |g 34(2016), 23, Seite 5423-5430 |w (DE-627)129620882 |w (DE-600)246121-3 |w (DE-576)015127214 |x 0733-8724 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2016 |g number:23 |g pages:5423-5430 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JLT.2016.2615044 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7582446 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_185 | ||
951 | |a AR | ||
952 | |d 34 |j 2016 |e 23 |h 5423-5430 |
author_variant |
r a h a rah raha |
---|---|
matchkey_str |
article:07338724:2016----::lrbodaduecniumeeainhogpooicytliew |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/JLT.2016.2615044 doi PQ20170501 (DE-627)OLC1988665205 (DE-599)GBVOLC1988665205 (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Ali, Rasha A. Hussein verfasserin aut Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass Hameed, Mohamed Farhat O oth Obayya, Salah S. A oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 34(2016), 23, Seite 5423-5430 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:34 year:2016 number:23 pages:5423-5430 http://dx.doi.org/10.1109/JLT.2016.2615044 Volltext http://ieeexplore.ieee.org/document/7582446 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 34 2016 23 5423-5430 |
spelling |
10.1109/JLT.2016.2615044 doi PQ20170501 (DE-627)OLC1988665205 (DE-599)GBVOLC1988665205 (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Ali, Rasha A. Hussein verfasserin aut Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass Hameed, Mohamed Farhat O oth Obayya, Salah S. A oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 34(2016), 23, Seite 5423-5430 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:34 year:2016 number:23 pages:5423-5430 http://dx.doi.org/10.1109/JLT.2016.2615044 Volltext http://ieeexplore.ieee.org/document/7582446 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 34 2016 23 5423-5430 |
allfields_unstemmed |
10.1109/JLT.2016.2615044 doi PQ20170501 (DE-627)OLC1988665205 (DE-599)GBVOLC1988665205 (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Ali, Rasha A. Hussein verfasserin aut Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass Hameed, Mohamed Farhat O oth Obayya, Salah S. A oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 34(2016), 23, Seite 5423-5430 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:34 year:2016 number:23 pages:5423-5430 http://dx.doi.org/10.1109/JLT.2016.2615044 Volltext http://ieeexplore.ieee.org/document/7582446 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 34 2016 23 5423-5430 |
allfieldsGer |
10.1109/JLT.2016.2615044 doi PQ20170501 (DE-627)OLC1988665205 (DE-599)GBVOLC1988665205 (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Ali, Rasha A. Hussein verfasserin aut Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass Hameed, Mohamed Farhat O oth Obayya, Salah S. A oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 34(2016), 23, Seite 5423-5430 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:34 year:2016 number:23 pages:5423-5430 http://dx.doi.org/10.1109/JLT.2016.2615044 Volltext http://ieeexplore.ieee.org/document/7582446 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 34 2016 23 5423-5430 |
allfieldsSound |
10.1109/JLT.2016.2615044 doi PQ20170501 (DE-627)OLC1988665205 (DE-599)GBVOLC1988665205 (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto DE-627 ger DE-627 rakwb eng 530 600 620 DE-600 Ali, Rasha A. Hussein verfasserin aut Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass Hameed, Mohamed Farhat O oth Obayya, Salah S. A oth Enthalten in Journal of lightwave technology New York, NY : IEEE, 1983 34(2016), 23, Seite 5423-5430 (DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 0733-8724 nnns volume:34 year:2016 number:23 pages:5423-5430 http://dx.doi.org/10.1109/JLT.2016.2615044 Volltext http://ieeexplore.ieee.org/document/7582446 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 AR 34 2016 23 5423-5430 |
language |
English |
source |
Enthalten in Journal of lightwave technology 34(2016), 23, Seite 5423-5430 volume:34 year:2016 number:23 pages:5423-5430 |
sourceStr |
Enthalten in Journal of lightwave technology 34(2016), 23, Seite 5423-5430 volume:34 year:2016 number:23 pages:5423-5430 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of lightwave technology |
authorswithroles_txt_mv |
Ali, Rasha A. Hussein @@aut@@ Hameed, Mohamed Farhat O @@oth@@ Obayya, Salah S. A @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129620882 |
dewey-sort |
3530 |
id |
OLC1988665205 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988665205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715022648.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2016.2615044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988665205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988665205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali, Rasha A. Hussein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinearity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photonic crystal fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supercontinuum generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chalcogenide glass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hameed, Mohamed Farhat O</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obayya, Salah S. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">34(2016), 23, Seite 5423-5430</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:23</subfield><subfield code="g">pages:5423-5430</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2016.2615044</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7582446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2016</subfield><subfield code="e">23</subfield><subfield code="h">5423-5430</subfield></datafield></record></collection>
|
author |
Ali, Rasha A. Hussein |
spellingShingle |
Ali, Rasha A. Hussein ddc 530 misc Optical fibers misc nonlinearity misc finite element method misc photonic crystal fibers misc dispersion misc supercontinuum generation misc Nonlinear optics misc Optical fiber devices misc Optical fiber dispersion misc Silicon compounds misc Chalcogenide glass misc Glass Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core |
authorStr |
Ali, Rasha A. Hussein |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129620882 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0733-8724 |
topic_title |
530 600 620 DE-600 Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core Optical fibers nonlinearity finite element method photonic crystal fibers dispersion supercontinuum generation Nonlinear optics Optical fiber devices Optical fiber dispersion Silicon compounds Chalcogenide glass Glass |
topic |
ddc 530 misc Optical fibers misc nonlinearity misc finite element method misc photonic crystal fibers misc dispersion misc supercontinuum generation misc Nonlinear optics misc Optical fiber devices misc Optical fiber dispersion misc Silicon compounds misc Chalcogenide glass misc Glass |
topic_unstemmed |
ddc 530 misc Optical fibers misc nonlinearity misc finite element method misc photonic crystal fibers misc dispersion misc supercontinuum generation misc Nonlinear optics misc Optical fiber devices misc Optical fiber dispersion misc Silicon compounds misc Chalcogenide glass misc Glass |
topic_browse |
ddc 530 misc Optical fibers misc nonlinearity misc finite element method misc photonic crystal fibers misc dispersion misc supercontinuum generation misc Nonlinear optics misc Optical fiber devices misc Optical fiber dispersion misc Silicon compounds misc Chalcogenide glass misc Glass |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m f o h mfo mfoh s s a o ssa ssao |
hierarchy_parent_title |
Journal of lightwave technology |
hierarchy_parent_id |
129620882 |
dewey-tens |
530 - Physics 600 - Technology 620 - Engineering |
hierarchy_top_title |
Journal of lightwave technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129620882 (DE-600)246121-3 (DE-576)015127214 |
title |
Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core |
ctrlnum |
(DE-627)OLC1988665205 (DE-599)GBVOLC1988665205 (PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30 (KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto |
title_full |
Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core |
author_sort |
Ali, Rasha A. Hussein |
journal |
Journal of lightwave technology |
journalStr |
Journal of lightwave technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
5423 |
author_browse |
Ali, Rasha A. Hussein |
container_volume |
34 |
class |
530 600 620 DE-600 |
format_se |
Aufsätze |
author-letter |
Ali, Rasha A. Hussein |
doi_str_mv |
10.1109/JLT.2016.2615044 |
dewey-full |
530 600 620 |
title_sort |
ultrabroadband supercontinuum generation through photonic crystal fiber with as2s3 chalcogenide core |
title_auth |
Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core |
abstract |
In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. |
abstractGer |
In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. |
abstract_unstemmed |
In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_185 |
container_issue |
23 |
title_short |
Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core |
url |
http://dx.doi.org/10.1109/JLT.2016.2615044 http://ieeexplore.ieee.org/document/7582446 |
remote_bool |
false |
author2 |
Hameed, Mohamed Farhat O Obayya, Salah S. A |
author2Str |
Hameed, Mohamed Farhat O Obayya, Salah S. A |
ppnlink |
129620882 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/JLT.2016.2615044 |
up_date |
2024-07-03T18:45:15.651Z |
_version_ |
1803584605432840192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988665205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715022648.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JLT.2016.2615044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988665205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988665205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1060-9a5ce36513e65d8799b12278a98b31d185a48c5f4b99635f7e6f943d1d2d63d30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0124889820160000034002305423ultrabroadbandsupercontinuumgenerationthroughphoto</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ali, Rasha A. Hussein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrabroadband Supercontinuum Generation Through Photonic Crystal Fiber With As2S3 Chalcogenide Core</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel design of silica photonic crystal fiber is proposed and analyzed for supercontinuum generation (SCG). The suggested design has an As 2 S 3 chalcogenide core region with large nonlinear coefficient and low anomalous dispersion. The modal analysis of the reported design is performed using a full vectorial finite element method while the SCG is simulated by solving the nonlinear Schrödinger equation using the split-step Fourier method. The effects of the fiber length, pump peak power, and pump wavelength on the SCG performance are studied thoroughly. It has been shown that the reported design has a very low zero dispersion wavelength, which facilitates the pumping at wavelength of 1.55 μm. Furthermore, the investigated design has ultrabroadband super continuum spectra of 2656 and 1788 nm around wavelengths of 1.55 and 1.3 μm, respectively, with a short device length of 10 mm. To the best of the authors' knowledge, the achieved ultrabroadband spectra are the maximum bandwidths with the shortest length for the two operating wavelengths 1.55 and 1.3 μm, simultaneously.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinearity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photonic crystal fibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supercontinuum generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon compounds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chalcogenide glass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hameed, Mohamed Farhat O</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obayya, Salah S. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of lightwave technology</subfield><subfield code="d">New York, NY : IEEE, 1983</subfield><subfield code="g">34(2016), 23, Seite 5423-5430</subfield><subfield code="w">(DE-627)129620882</subfield><subfield code="w">(DE-600)246121-3</subfield><subfield code="w">(DE-576)015127214</subfield><subfield code="x">0733-8724</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:23</subfield><subfield code="g">pages:5423-5430</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JLT.2016.2615044</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7582446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_185</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2016</subfield><subfield code="e">23</subfield><subfield code="h">5423-5430</subfield></datafield></record></collection>
|
score |
7.4013977 |