Recommendations for diagnosing effective radiative forcing from climate models for CMIP6
The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than tradi...
Ausführliche Beschreibung
Autor*in: |
Forster, Piers M [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016. The Authors. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geophysical research / D - Washington, DC : Union, 1984, 121(2016), 20 |
---|---|
Übergeordnetes Werk: |
volume:121 ; year:2016 ; number:20 |
Links: |
---|
DOI / URN: |
10.1002/2016JD025320 |
---|
Katalog-ID: |
OLC198877389X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198877389X | ||
003 | DE-627 | ||
005 | 20230715023030.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2016JD025320 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC198877389X | ||
035 | |a (DE-599)GBVOLC198877389X | ||
035 | |a (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 | ||
035 | |a (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
100 | 1 | |a Forster, Piers M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) | ||
540 | |a Nutzungsrecht: © 2016. The Authors. | ||
650 | 4 | |a RFMIP | |
650 | 4 | |a AerChemMIP | |
650 | 4 | |a radiative forcing | |
650 | 4 | |a CMIP6 | |
650 | 4 | |a climate models | |
650 | 4 | |a effective radiative forcing | |
650 | 4 | |a Confidence intervals | |
650 | 4 | |a Climate | |
700 | 1 | |a Richardson, Thomas |4 oth | |
700 | 1 | |a Maycock, Amanda C |4 oth | |
700 | 1 | |a Smith, Christopher J |4 oth | |
700 | 1 | |a Samset, Bjorn H |4 oth | |
700 | 1 | |a Myhre, Gunnar |4 oth | |
700 | 1 | |a Andrews, Timothy |4 oth | |
700 | 1 | |a Pincus, Robert |4 oth | |
700 | 1 | |a Schulz, Michael |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of geophysical research / D |d Washington, DC : Union, 1984 |g 121(2016), 20 |w (DE-627)130444391 |w (DE-600)710256-2 |w (DE-576)015978818 |x 2169-897X |7 nnns |
773 | 1 | 8 | |g volume:121 |g year:2016 |g number:20 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2016JD025320 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1845021130 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
951 | |a AR | ||
952 | |d 121 |j 2016 |e 20 |
author_variant |
p m f pm pmf |
---|---|
matchkey_str |
article:2169897X:2016----::eomnainfrigoigfetvrdaieocnfo |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1002/2016JD025320 doi PQ20170206 (DE-627)OLC198877389X (DE-599)GBVOLC198877389X (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc DE-627 ger DE-627 rakwb eng 550 DNB Forster, Piers M verfasserin aut Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) Nutzungsrecht: © 2016. The Authors. RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate Richardson, Thomas oth Maycock, Amanda C oth Smith, Christopher J oth Samset, Bjorn H oth Myhre, Gunnar oth Andrews, Timothy oth Pincus, Robert oth Schulz, Michael oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 20 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:20 http://dx.doi.org/10.1002/2016JD025320 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract http://search.proquest.com/docview/1845021130 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 20 |
spelling |
10.1002/2016JD025320 doi PQ20170206 (DE-627)OLC198877389X (DE-599)GBVOLC198877389X (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc DE-627 ger DE-627 rakwb eng 550 DNB Forster, Piers M verfasserin aut Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) Nutzungsrecht: © 2016. The Authors. RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate Richardson, Thomas oth Maycock, Amanda C oth Smith, Christopher J oth Samset, Bjorn H oth Myhre, Gunnar oth Andrews, Timothy oth Pincus, Robert oth Schulz, Michael oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 20 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:20 http://dx.doi.org/10.1002/2016JD025320 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract http://search.proquest.com/docview/1845021130 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 20 |
allfields_unstemmed |
10.1002/2016JD025320 doi PQ20170206 (DE-627)OLC198877389X (DE-599)GBVOLC198877389X (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc DE-627 ger DE-627 rakwb eng 550 DNB Forster, Piers M verfasserin aut Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) Nutzungsrecht: © 2016. The Authors. RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate Richardson, Thomas oth Maycock, Amanda C oth Smith, Christopher J oth Samset, Bjorn H oth Myhre, Gunnar oth Andrews, Timothy oth Pincus, Robert oth Schulz, Michael oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 20 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:20 http://dx.doi.org/10.1002/2016JD025320 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract http://search.proquest.com/docview/1845021130 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 20 |
allfieldsGer |
10.1002/2016JD025320 doi PQ20170206 (DE-627)OLC198877389X (DE-599)GBVOLC198877389X (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc DE-627 ger DE-627 rakwb eng 550 DNB Forster, Piers M verfasserin aut Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) Nutzungsrecht: © 2016. The Authors. RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate Richardson, Thomas oth Maycock, Amanda C oth Smith, Christopher J oth Samset, Bjorn H oth Myhre, Gunnar oth Andrews, Timothy oth Pincus, Robert oth Schulz, Michael oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 20 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:20 http://dx.doi.org/10.1002/2016JD025320 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract http://search.proquest.com/docview/1845021130 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 20 |
allfieldsSound |
10.1002/2016JD025320 doi PQ20170206 (DE-627)OLC198877389X (DE-599)GBVOLC198877389X (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc DE-627 ger DE-627 rakwb eng 550 DNB Forster, Piers M verfasserin aut Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) Nutzungsrecht: © 2016. The Authors. RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate Richardson, Thomas oth Maycock, Amanda C oth Smith, Christopher J oth Samset, Bjorn H oth Myhre, Gunnar oth Andrews, Timothy oth Pincus, Robert oth Schulz, Michael oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 20 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:20 http://dx.doi.org/10.1002/2016JD025320 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract http://search.proquest.com/docview/1845021130 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 20 |
language |
English |
source |
Enthalten in Journal of geophysical research / D 121(2016), 20 volume:121 year:2016 number:20 |
sourceStr |
Enthalten in Journal of geophysical research / D 121(2016), 20 volume:121 year:2016 number:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geophysical research / D |
authorswithroles_txt_mv |
Forster, Piers M @@aut@@ Richardson, Thomas @@oth@@ Maycock, Amanda C @@oth@@ Smith, Christopher J @@oth@@ Samset, Bjorn H @@oth@@ Myhre, Gunnar @@oth@@ Andrews, Timothy @@oth@@ Pincus, Robert @@oth@@ Schulz, Michael @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130444391 |
dewey-sort |
3550 |
id |
OLC198877389X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198877389X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715023030.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016JD025320</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198877389X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198877389X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forster, Piers M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recommendations for diagnosing effective radiative forcing from climate models for CMIP6</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular)</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. The Authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RFMIP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AerChemMIP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMIP6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Confidence intervals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richardson, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maycock, Amanda C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Christopher J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samset, Bjorn H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Myhre, Gunnar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andrews, Timothy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pincus, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulz, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / D</subfield><subfield code="d">Washington, DC : Union, 1984</subfield><subfield code="g">121(2016), 20</subfield><subfield code="w">(DE-627)130444391</subfield><subfield code="w">(DE-600)710256-2</subfield><subfield code="w">(DE-576)015978818</subfield><subfield code="x">2169-897X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016JD025320</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1845021130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield></datafield></record></collection>
|
author |
Forster, Piers M |
spellingShingle |
Forster, Piers M ddc 550 misc RFMIP misc AerChemMIP misc radiative forcing misc CMIP6 misc climate models misc effective radiative forcing misc Confidence intervals misc Climate Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 |
authorStr |
Forster, Piers M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130444391 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
2169-897X |
topic_title |
550 DNB Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 RFMIP AerChemMIP radiative forcing CMIP6 climate models effective radiative forcing Confidence intervals Climate |
topic |
ddc 550 misc RFMIP misc AerChemMIP misc radiative forcing misc CMIP6 misc climate models misc effective radiative forcing misc Confidence intervals misc Climate |
topic_unstemmed |
ddc 550 misc RFMIP misc AerChemMIP misc radiative forcing misc CMIP6 misc climate models misc effective radiative forcing misc Confidence intervals misc Climate |
topic_browse |
ddc 550 misc RFMIP misc AerChemMIP misc radiative forcing misc CMIP6 misc climate models misc effective radiative forcing misc Confidence intervals misc Climate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t r tr a c m ac acm c j s cj cjs b h s bh bhs g m gm t a ta r p rp m s ms |
hierarchy_parent_title |
Journal of geophysical research / D |
hierarchy_parent_id |
130444391 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geophysical research / D |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 |
title |
Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 |
ctrlnum |
(DE-627)OLC198877389X (DE-599)GBVOLC198877389X (PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80 (KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc |
title_full |
Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 |
author_sort |
Forster, Piers M |
journal |
Journal of geophysical research / D |
journalStr |
Journal of geophysical research / D |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Forster, Piers M |
container_volume |
121 |
class |
550 DNB |
format_se |
Aufsätze |
author-letter |
Forster, Piers M |
doi_str_mv |
10.1002/2016JD025320 |
dewey-full |
550 |
title_sort |
recommendations for diagnosing effective radiative forcing from climate models for cmip6 |
title_auth |
Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 |
abstract |
The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) |
abstractGer |
The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) |
abstract_unstemmed |
The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular) |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 |
container_issue |
20 |
title_short |
Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 |
url |
http://dx.doi.org/10.1002/2016JD025320 http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract http://search.proquest.com/docview/1845021130 |
remote_bool |
false |
author2 |
Richardson, Thomas Maycock, Amanda C Smith, Christopher J Samset, Bjorn H Myhre, Gunnar Andrews, Timothy Pincus, Robert Schulz, Michael |
author2Str |
Richardson, Thomas Maycock, Amanda C Smith, Christopher J Samset, Bjorn H Myhre, Gunnar Andrews, Timothy Pincus, Robert Schulz, Michael |
ppnlink |
130444391 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1002/2016JD025320 |
up_date |
2024-07-03T19:11:06.300Z |
_version_ |
1803586231390437376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198877389X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715023030.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016JD025320</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198877389X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198877389X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1370-bdc2441decc7499f14550115d50d477caf6514b79cb93b00d12614a6a2222da80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0137985220160000121002000000recommendationsfordiagnosingeffectiveradiativeforc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forster, Piers M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recommendations for diagnosing effective radiative forcing from climate models for CMIP6</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the eventual temperature response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea surface temperature (SST) method (ERF_fSST) has much more certainty than regression based methods. Thirty year integrations are sufficient to reduce the 5–95% confidence interval in global ERF_fSST to 0.1 W m −2 . For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the local confidence interval over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30 year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea ice. The Aerosol and Chemistry Model Intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF and recommend that it be used across the climate modeling community to aid future comparisons. We recommend a protocol for estimating ERF in GCMs Error characteristics of ERF make diagnosing small forcings hard Some CMIP6 protocols may not work (AerCHemMIP in particular)</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. The Authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RFMIP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AerChemMIP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMIP6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effective radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Confidence intervals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richardson, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maycock, Amanda C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Christopher J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samset, Bjorn H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Myhre, Gunnar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andrews, Timothy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pincus, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulz, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / D</subfield><subfield code="d">Washington, DC : Union, 1984</subfield><subfield code="g">121(2016), 20</subfield><subfield code="w">(DE-627)130444391</subfield><subfield code="w">(DE-600)710256-2</subfield><subfield code="w">(DE-576)015978818</subfield><subfield code="x">2169-897X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016JD025320</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016JD025320/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1845021130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield></datafield></record></collection>
|
score |
7.400487 |