Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model
Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and win...
Ausführliche Beschreibung
Autor*in: |
Lee, Duehee [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
stochastic mixed integer programming |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power systems - New York, NY : IEEE, 1986, 32(2017), 1, Seite 400-410 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2017 ; number:1 ; pages:400-410 |
Links: |
---|
DOI / URN: |
10.1109/TPWRS.2016.2562718 |
---|
Katalog-ID: |
OLC1988983193 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1988983193 | ||
003 | DE-627 | ||
005 | 20220220120703.0 | ||
007 | tu | ||
008 | 170207s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPWRS.2016.2562718 |2 doi | |
028 | 5 | 2 | |a PQ20170206 |
035 | |a (DE-627)OLC1988983193 | ||
035 | |a (DE-599)GBVOLC1988983193 | ||
035 | |a (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 | ||
035 | |a (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.00 |2 bkl | ||
084 | |a 53.30 |2 bkl | ||
100 | 1 | |a Lee, Duehee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. | ||
650 | 4 | |a Wind speed | |
650 | 4 | |a Load modeling | |
650 | 4 | |a load and wind power scenario | |
650 | 4 | |a Wind farms | |
650 | 4 | |a stochastic mixed integer programming | |
650 | 4 | |a Power system dynamics | |
650 | 4 | |a Generalized dynamic factor model | |
650 | 4 | |a Correlation | |
650 | 4 | |a Time series analysis | |
650 | 4 | |a Wind power generation | |
700 | 1 | |a Baldick, Ross |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power systems |d New York, NY : IEEE, 1986 |g 32(2017), 1, Seite 400-410 |w (DE-627)129582344 |w (DE-600)232866-5 |w (DE-576)015075893 |x 0885-8950 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2017 |g number:1 |g pages:400-410 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPWRS.2016.2562718 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7466134 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
936 | b | k | |a 53.00 |q AVZ |
936 | b | k | |a 53.30 |q AVZ |
951 | |a AR | ||
952 | |d 32 |j 2017 |e 1 |h 400-410 |
author_variant |
d l dl |
---|---|
matchkey_str |
article:08858950:2017----::odnwnpwrcnroeeainhogteeeaie |
hierarchy_sort_str |
2017 |
bklnumber |
53.00 53.30 |
publishDate |
2017 |
allfields |
10.1109/TPWRS.2016.2562718 doi PQ20170206 (DE-627)OLC1988983193 (DE-599)GBVOLC1988983193 (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Lee, Duehee verfasserin aut Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 1, Seite 400-410 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:1 pages:400-410 http://dx.doi.org/10.1109/TPWRS.2016.2562718 Volltext http://ieeexplore.ieee.org/document/7466134 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 1 400-410 |
spelling |
10.1109/TPWRS.2016.2562718 doi PQ20170206 (DE-627)OLC1988983193 (DE-599)GBVOLC1988983193 (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Lee, Duehee verfasserin aut Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 1, Seite 400-410 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:1 pages:400-410 http://dx.doi.org/10.1109/TPWRS.2016.2562718 Volltext http://ieeexplore.ieee.org/document/7466134 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 1 400-410 |
allfields_unstemmed |
10.1109/TPWRS.2016.2562718 doi PQ20170206 (DE-627)OLC1988983193 (DE-599)GBVOLC1988983193 (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Lee, Duehee verfasserin aut Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 1, Seite 400-410 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:1 pages:400-410 http://dx.doi.org/10.1109/TPWRS.2016.2562718 Volltext http://ieeexplore.ieee.org/document/7466134 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 1 400-410 |
allfieldsGer |
10.1109/TPWRS.2016.2562718 doi PQ20170206 (DE-627)OLC1988983193 (DE-599)GBVOLC1988983193 (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Lee, Duehee verfasserin aut Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 1, Seite 400-410 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:1 pages:400-410 http://dx.doi.org/10.1109/TPWRS.2016.2562718 Volltext http://ieeexplore.ieee.org/document/7466134 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 1 400-410 |
allfieldsSound |
10.1109/TPWRS.2016.2562718 doi PQ20170206 (DE-627)OLC1988983193 (DE-599)GBVOLC1988983193 (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Lee, Duehee verfasserin aut Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation Baldick, Ross oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 1, Seite 400-410 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:1 pages:400-410 http://dx.doi.org/10.1109/TPWRS.2016.2562718 Volltext http://ieeexplore.ieee.org/document/7466134 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 1 400-410 |
language |
English |
source |
Enthalten in IEEE transactions on power systems 32(2017), 1, Seite 400-410 volume:32 year:2017 number:1 pages:400-410 |
sourceStr |
Enthalten in IEEE transactions on power systems 32(2017), 1, Seite 400-410 volume:32 year:2017 number:1 pages:400-410 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power systems |
authorswithroles_txt_mv |
Lee, Duehee @@aut@@ Baldick, Ross @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129582344 |
dewey-sort |
3620 |
id |
OLC1988983193 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988983193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220120703.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRS.2016.2562718</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988983193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988983193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Duehee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load and wind power scenario</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind farms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic mixed integer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power system dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized dynamic factor model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power generation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldick, Ross</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power systems</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">32(2017), 1, Seite 400-410</subfield><subfield code="w">(DE-627)129582344</subfield><subfield code="w">(DE-600)232866-5</subfield><subfield code="w">(DE-576)015075893</subfield><subfield code="x">0885-8950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:400-410</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRS.2016.2562718</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7466134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">400-410</subfield></datafield></record></collection>
|
author |
Lee, Duehee |
spellingShingle |
Lee, Duehee ddc 620 bkl 53.00 bkl 53.30 misc Wind speed misc Load modeling misc load and wind power scenario misc Wind farms misc stochastic mixed integer programming misc Power system dynamics misc Generalized dynamic factor model misc Correlation misc Time series analysis misc Wind power generation Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model |
authorStr |
Lee, Duehee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129582344 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8950 |
topic_title |
620 DNB 53.00 bkl 53.30 bkl Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model Wind speed Load modeling load and wind power scenario Wind farms stochastic mixed integer programming Power system dynamics Generalized dynamic factor model Correlation Time series analysis Wind power generation |
topic |
ddc 620 bkl 53.00 bkl 53.30 misc Wind speed misc Load modeling misc load and wind power scenario misc Wind farms misc stochastic mixed integer programming misc Power system dynamics misc Generalized dynamic factor model misc Correlation misc Time series analysis misc Wind power generation |
topic_unstemmed |
ddc 620 bkl 53.00 bkl 53.30 misc Wind speed misc Load modeling misc load and wind power scenario misc Wind farms misc stochastic mixed integer programming misc Power system dynamics misc Generalized dynamic factor model misc Correlation misc Time series analysis misc Wind power generation |
topic_browse |
ddc 620 bkl 53.00 bkl 53.30 misc Wind speed misc Load modeling misc load and wind power scenario misc Wind farms misc stochastic mixed integer programming misc Power system dynamics misc Generalized dynamic factor model misc Correlation misc Time series analysis misc Wind power generation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r b rb |
hierarchy_parent_title |
IEEE transactions on power systems |
hierarchy_parent_id |
129582344 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 |
title |
Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model |
ctrlnum |
(DE-627)OLC1988983193 (DE-599)GBVOLC1988983193 (PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0 (KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera |
title_full |
Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model |
author_sort |
Lee, Duehee |
journal |
IEEE transactions on power systems |
journalStr |
IEEE transactions on power systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
400 |
author_browse |
Lee, Duehee |
container_volume |
32 |
class |
620 DNB 53.00 bkl 53.30 bkl |
format_se |
Aufsätze |
author-letter |
Lee, Duehee |
doi_str_mv |
10.1109/TPWRS.2016.2562718 |
dewey-full |
620 |
title_sort |
load and wind power scenario generation through the generalized dynamic factor model |
title_auth |
Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model |
abstract |
Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. |
abstractGer |
Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. |
abstract_unstemmed |
Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 |
container_issue |
1 |
title_short |
Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model |
url |
http://dx.doi.org/10.1109/TPWRS.2016.2562718 http://ieeexplore.ieee.org/document/7466134 |
remote_bool |
false |
author2 |
Baldick, Ross |
author2Str |
Baldick, Ross |
ppnlink |
129582344 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TPWRS.2016.2562718 |
up_date |
2024-07-03T19:58:06.653Z |
_version_ |
1803589188750147584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1988983193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220120703.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRS.2016.2562718</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1988983193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1988983193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c966-784d8992cf3b4ef0d2e5271a358d3c26a5dcb8a6d1ee29e007edfb18b0ea08ed0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163645620170000032000100400loadandwindpowerscenariogenerationthroughthegenera</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Duehee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Load and wind power scenarios are synthesized through the generalized dynamic factor model (GDFM), which represents the load and wind power as the sum of a periodic component, idiosyncratic noise component, and common component, where the GDFM preserves the correlation structure between load and wind. The common component consists of the dynamic shock, which is white noise, and the matrix polynomial, which represents the temporal and geographical correlation between load and wind power. Since the dimension of dynamic shocks is less than that of actual load and wind power, the GDFM requires fewer dimensions and variables than multivariate time series models. Scenarios are verified through statistical, spectral density, and correlation analysis. The usefulness of scenarios is also verified by calculating the total generation and transmission upgrade costs on the IEEE 300-bus benchmark. Using correlated scenarios results in higher generation and upgrade costs than using uncorrelated or weakly correlated scenarios. Therefore, correlated scenarios should be used in order to more accurately estimate power system planning costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind speed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load and wind power scenario</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind farms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic mixed integer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power system dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized dynamic factor model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power generation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldick, Ross</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power systems</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">32(2017), 1, Seite 400-410</subfield><subfield code="w">(DE-627)129582344</subfield><subfield code="w">(DE-600)232866-5</subfield><subfield code="w">(DE-576)015075893</subfield><subfield code="x">0885-8950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:400-410</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRS.2016.2562718</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7466134</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">400-410</subfield></datafield></record></collection>
|
score |
7.401019 |