Classification of flat connected quandles
Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear...
Ausführliche Beschreibung
Autor*in: |
Singh, Mahender [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016, World Scientific Publishing Company |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of knot theory and its ramifications - Singapore [u.a.] : World Scientific, 1992, 25(2016), 13 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2016 ; number:13 |
Links: |
---|
DOI / URN: |
10.1142/S0218216516500711 |
---|
Katalog-ID: |
OLC198939034X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC198939034X | ||
003 | DE-627 | ||
005 | 20230715025119.0 | ||
007 | tu | ||
008 | 170207s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1142/S0218216516500711 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC198939034X | ||
035 | |a (DE-599)GBVOLC198939034X | ||
035 | |a (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 | ||
035 | |a (KEY)0215615620160000025001300000classificationofflatconnectedquandles | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
100 | 1 | |a Singh, Mahender |e verfasserin |4 aut | |
245 | 1 | 0 | |a Classification of flat connected quandles |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. | ||
540 | |a Nutzungsrecht: © 2016, World Scientific Publishing Company | ||
773 | 0 | 8 | |i Enthalten in |t Journal of knot theory and its ramifications |d Singapore [u.a.] : World Scientific, 1992 |g 25(2016), 13 |w (DE-627)131064819 |w (DE-600)1108304-9 |w (DE-576)033026351 |x 0218-2165 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2016 |g number:13 |
856 | 4 | 1 | |u http://dx.doi.org/10.1142/S0218216516500711 |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 25 |j 2016 |e 13 |
author_variant |
m s ms |
---|---|
matchkey_str |
article:02182165:2016----::lsiiainfltonc |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1142/S0218216516500711 doi PQ20170301 (DE-627)OLC198939034X (DE-599)GBVOLC198939034X (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 (KEY)0215615620160000025001300000classificationofflatconnectedquandles DE-627 ger DE-627 rakwb eng 510 ZDB Singh, Mahender verfasserin aut Classification of flat connected quandles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. Nutzungsrecht: © 2016, World Scientific Publishing Company Enthalten in Journal of knot theory and its ramifications Singapore [u.a.] : World Scientific, 1992 25(2016), 13 (DE-627)131064819 (DE-600)1108304-9 (DE-576)033026351 0218-2165 nnns volume:25 year:2016 number:13 http://dx.doi.org/10.1142/S0218216516500711 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4310 GBV_ILN_4323 AR 25 2016 13 |
spelling |
10.1142/S0218216516500711 doi PQ20170301 (DE-627)OLC198939034X (DE-599)GBVOLC198939034X (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 (KEY)0215615620160000025001300000classificationofflatconnectedquandles DE-627 ger DE-627 rakwb eng 510 ZDB Singh, Mahender verfasserin aut Classification of flat connected quandles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. Nutzungsrecht: © 2016, World Scientific Publishing Company Enthalten in Journal of knot theory and its ramifications Singapore [u.a.] : World Scientific, 1992 25(2016), 13 (DE-627)131064819 (DE-600)1108304-9 (DE-576)033026351 0218-2165 nnns volume:25 year:2016 number:13 http://dx.doi.org/10.1142/S0218216516500711 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4310 GBV_ILN_4323 AR 25 2016 13 |
allfields_unstemmed |
10.1142/S0218216516500711 doi PQ20170301 (DE-627)OLC198939034X (DE-599)GBVOLC198939034X (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 (KEY)0215615620160000025001300000classificationofflatconnectedquandles DE-627 ger DE-627 rakwb eng 510 ZDB Singh, Mahender verfasserin aut Classification of flat connected quandles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. Nutzungsrecht: © 2016, World Scientific Publishing Company Enthalten in Journal of knot theory and its ramifications Singapore [u.a.] : World Scientific, 1992 25(2016), 13 (DE-627)131064819 (DE-600)1108304-9 (DE-576)033026351 0218-2165 nnns volume:25 year:2016 number:13 http://dx.doi.org/10.1142/S0218216516500711 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4310 GBV_ILN_4323 AR 25 2016 13 |
allfieldsGer |
10.1142/S0218216516500711 doi PQ20170301 (DE-627)OLC198939034X (DE-599)GBVOLC198939034X (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 (KEY)0215615620160000025001300000classificationofflatconnectedquandles DE-627 ger DE-627 rakwb eng 510 ZDB Singh, Mahender verfasserin aut Classification of flat connected quandles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. Nutzungsrecht: © 2016, World Scientific Publishing Company Enthalten in Journal of knot theory and its ramifications Singapore [u.a.] : World Scientific, 1992 25(2016), 13 (DE-627)131064819 (DE-600)1108304-9 (DE-576)033026351 0218-2165 nnns volume:25 year:2016 number:13 http://dx.doi.org/10.1142/S0218216516500711 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4310 GBV_ILN_4323 AR 25 2016 13 |
allfieldsSound |
10.1142/S0218216516500711 doi PQ20170301 (DE-627)OLC198939034X (DE-599)GBVOLC198939034X (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 (KEY)0215615620160000025001300000classificationofflatconnectedquandles DE-627 ger DE-627 rakwb eng 510 ZDB Singh, Mahender verfasserin aut Classification of flat connected quandles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. Nutzungsrecht: © 2016, World Scientific Publishing Company Enthalten in Journal of knot theory and its ramifications Singapore [u.a.] : World Scientific, 1992 25(2016), 13 (DE-627)131064819 (DE-600)1108304-9 (DE-576)033026351 0218-2165 nnns volume:25 year:2016 number:13 http://dx.doi.org/10.1142/S0218216516500711 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4310 GBV_ILN_4323 AR 25 2016 13 |
language |
English |
source |
Enthalten in Journal of knot theory and its ramifications 25(2016), 13 volume:25 year:2016 number:13 |
sourceStr |
Enthalten in Journal of knot theory and its ramifications 25(2016), 13 volume:25 year:2016 number:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of knot theory and its ramifications |
authorswithroles_txt_mv |
Singh, Mahender @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
131064819 |
dewey-sort |
3510 |
id |
OLC198939034X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198939034X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715025119.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/S0218216516500711</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198939034X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198939034X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0215615620160000025001300000classificationofflatconnectedquandles</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Mahender</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classification of flat connected quandles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016, World Scientific Publishing Company</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of knot theory and its ramifications</subfield><subfield code="d">Singapore [u.a.] : World Scientific, 1992</subfield><subfield code="g">25(2016), 13</subfield><subfield code="w">(DE-627)131064819</subfield><subfield code="w">(DE-600)1108304-9</subfield><subfield code="w">(DE-576)033026351</subfield><subfield code="x">0218-2165</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1142/S0218216516500711</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield></datafield></record></collection>
|
author |
Singh, Mahender |
spellingShingle |
Singh, Mahender ddc 510 Classification of flat connected quandles |
authorStr |
Singh, Mahender |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131064819 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0218-2165 |
topic_title |
510 ZDB Classification of flat connected quandles |
topic |
ddc 510 |
topic_unstemmed |
ddc 510 |
topic_browse |
ddc 510 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of knot theory and its ramifications |
hierarchy_parent_id |
131064819 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of knot theory and its ramifications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131064819 (DE-600)1108304-9 (DE-576)033026351 |
title |
Classification of flat connected quandles |
ctrlnum |
(DE-627)OLC198939034X (DE-599)GBVOLC198939034X (PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80 (KEY)0215615620160000025001300000classificationofflatconnectedquandles |
title_full |
Classification of flat connected quandles |
author_sort |
Singh, Mahender |
journal |
Journal of knot theory and its ramifications |
journalStr |
Journal of knot theory and its ramifications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Singh, Mahender |
container_volume |
25 |
class |
510 ZDB |
format_se |
Aufsätze |
author-letter |
Singh, Mahender |
doi_str_mv |
10.1142/S0218216516500711 |
dewey-full |
510 |
title_sort |
classification of flat connected quandles |
title_auth |
Classification of flat connected quandles |
abstract |
Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. |
abstractGer |
Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. |
abstract_unstemmed |
Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2409 GBV_ILN_4310 GBV_ILN_4323 |
container_issue |
13 |
title_short |
Classification of flat connected quandles |
url |
http://dx.doi.org/10.1142/S0218216516500711 |
remote_bool |
false |
ppnlink |
131064819 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1142/S0218216516500711 |
up_date |
2024-07-03T21:23:53.246Z |
_version_ |
1803594585338806273 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC198939034X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715025119.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170207s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/S0218216516500711</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC198939034X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC198939034X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)s1011-4dce86da592eae001a6e69aa5cecdc2ca284fd13916466f4cc0ec44e8fb0dfa80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0215615620160000025001300000classificationofflatconnectedquandles</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Mahender</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classification of flat connected quandles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let A be an additive abelian group. Then the binary operation a ∗ b = 2 b − a gives a quandle structure on A , denoted by T ( A ) , and called the Takasaki quandle of A . Viewing quandles as generalization of Riemannian symmetric spaces, Ishihara and Tamaru [Flat connected finite quandles, to appear in Proc. Amer. Math. Soc. (2016)] introduced flat quandles, and classified quandles which are finite, flat and connected. In this note, we classify all flat connected quandles. More precisely, we prove that a quandle X is flat and connected if and only if X ≅ T ( A ) , where A is a 2-divisible group.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016, World Scientific Publishing Company</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of knot theory and its ramifications</subfield><subfield code="d">Singapore [u.a.] : World Scientific, 1992</subfield><subfield code="g">25(2016), 13</subfield><subfield code="w">(DE-627)131064819</subfield><subfield code="w">(DE-600)1108304-9</subfield><subfield code="w">(DE-576)033026351</subfield><subfield code="x">0218-2165</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:13</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1142/S0218216516500711</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2016</subfield><subfield code="e">13</subfield></datafield></record></collection>
|
score |
7.401742 |