Palindromic automorphisms of free nilpotent groups
In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic aut...
Ausführliche Beschreibung
Autor*in: |
Bardakov, Valeriy G [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of pure and applied algebra - Amsterdam : North-Holland Publ., 1971, 221(2017), 2, Seite 316-338 |
---|---|
Übergeordnetes Werk: |
volume:221 ; year:2017 ; number:2 ; pages:316-338 |
Links: |
---|
DOI / URN: |
10.1016/j.jpaa.2016.06.011 |
---|
Katalog-ID: |
OLC1990361390 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1990361390 | ||
003 | DE-627 | ||
005 | 20220216183344.0 | ||
007 | tu | ||
008 | 170303s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpaa.2016.06.011 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1990361390 | ||
035 | |a (DE-599)GBVOLC1990361390 | ||
035 | |a (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 | ||
035 | |a (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a SA 6440 |q AVZ |2 rvk | ||
084 | |a 31.20 |2 bkl | ||
100 | 1 | |a Bardakov, Valeriy G |e verfasserin |4 aut | |
245 | 1 | 0 | |a Palindromic automorphisms of free nilpotent groups |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. | ||
650 | 4 | |a Group Theory | |
650 | 4 | |a 20E36 | |
650 | 4 | |a 20E05 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a 20F28 | |
700 | 1 | |a Gongopadhyay, Krishnendu |4 oth | |
700 | 1 | |a Neshchadim, Mikhail V |4 oth | |
700 | 1 | |a Singh, Mahender |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of pure and applied algebra |d Amsterdam : North-Holland Publ., 1971 |g 221(2017), 2, Seite 316-338 |w (DE-627)129289094 |w (DE-600)120150-5 |w (DE-576)014470624 |x 0022-4049 |7 nnns |
773 | 1 | 8 | |g volume:221 |g year:2017 |g number:2 |g pages:316-338 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.jpaa.2016.06.011 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1506.03195 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4027 | ||
936 | r | v | |a SA 6440 |
936 | b | k | |a 31.20 |q AVZ |
951 | |a AR | ||
952 | |d 221 |j 2017 |e 2 |h 316-338 |
author_variant |
v g b vg vgb |
---|---|
matchkey_str |
article:00224049:2017----::aidoiatmrhssfrei |
hierarchy_sort_str |
2017 |
bklnumber |
31.20 |
publishDate |
2017 |
allfields |
10.1016/j.jpaa.2016.06.011 doi PQ20170721 (DE-627)OLC1990361390 (DE-599)GBVOLC1990361390 (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups DE-627 ger DE-627 rakwb eng 510 DNB SA 6440 AVZ rvk 31.20 bkl Bardakov, Valeriy G verfasserin aut Palindromic automorphisms of free nilpotent groups 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. Group Theory 20E36 20E05 Mathematics 20F28 Gongopadhyay, Krishnendu oth Neshchadim, Mikhail V oth Singh, Mahender oth Enthalten in Journal of pure and applied algebra Amsterdam : North-Holland Publ., 1971 221(2017), 2, Seite 316-338 (DE-627)129289094 (DE-600)120150-5 (DE-576)014470624 0022-4049 nnns volume:221 year:2017 number:2 pages:316-338 http://dx.doi.org/10.1016/j.jpaa.2016.06.011 Volltext http://arxiv.org/abs/1506.03195 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4027 SA 6440 31.20 AVZ AR 221 2017 2 316-338 |
spelling |
10.1016/j.jpaa.2016.06.011 doi PQ20170721 (DE-627)OLC1990361390 (DE-599)GBVOLC1990361390 (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups DE-627 ger DE-627 rakwb eng 510 DNB SA 6440 AVZ rvk 31.20 bkl Bardakov, Valeriy G verfasserin aut Palindromic automorphisms of free nilpotent groups 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. Group Theory 20E36 20E05 Mathematics 20F28 Gongopadhyay, Krishnendu oth Neshchadim, Mikhail V oth Singh, Mahender oth Enthalten in Journal of pure and applied algebra Amsterdam : North-Holland Publ., 1971 221(2017), 2, Seite 316-338 (DE-627)129289094 (DE-600)120150-5 (DE-576)014470624 0022-4049 nnns volume:221 year:2017 number:2 pages:316-338 http://dx.doi.org/10.1016/j.jpaa.2016.06.011 Volltext http://arxiv.org/abs/1506.03195 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4027 SA 6440 31.20 AVZ AR 221 2017 2 316-338 |
allfields_unstemmed |
10.1016/j.jpaa.2016.06.011 doi PQ20170721 (DE-627)OLC1990361390 (DE-599)GBVOLC1990361390 (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups DE-627 ger DE-627 rakwb eng 510 DNB SA 6440 AVZ rvk 31.20 bkl Bardakov, Valeriy G verfasserin aut Palindromic automorphisms of free nilpotent groups 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. Group Theory 20E36 20E05 Mathematics 20F28 Gongopadhyay, Krishnendu oth Neshchadim, Mikhail V oth Singh, Mahender oth Enthalten in Journal of pure and applied algebra Amsterdam : North-Holland Publ., 1971 221(2017), 2, Seite 316-338 (DE-627)129289094 (DE-600)120150-5 (DE-576)014470624 0022-4049 nnns volume:221 year:2017 number:2 pages:316-338 http://dx.doi.org/10.1016/j.jpaa.2016.06.011 Volltext http://arxiv.org/abs/1506.03195 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4027 SA 6440 31.20 AVZ AR 221 2017 2 316-338 |
allfieldsGer |
10.1016/j.jpaa.2016.06.011 doi PQ20170721 (DE-627)OLC1990361390 (DE-599)GBVOLC1990361390 (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups DE-627 ger DE-627 rakwb eng 510 DNB SA 6440 AVZ rvk 31.20 bkl Bardakov, Valeriy G verfasserin aut Palindromic automorphisms of free nilpotent groups 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. Group Theory 20E36 20E05 Mathematics 20F28 Gongopadhyay, Krishnendu oth Neshchadim, Mikhail V oth Singh, Mahender oth Enthalten in Journal of pure and applied algebra Amsterdam : North-Holland Publ., 1971 221(2017), 2, Seite 316-338 (DE-627)129289094 (DE-600)120150-5 (DE-576)014470624 0022-4049 nnns volume:221 year:2017 number:2 pages:316-338 http://dx.doi.org/10.1016/j.jpaa.2016.06.011 Volltext http://arxiv.org/abs/1506.03195 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4027 SA 6440 31.20 AVZ AR 221 2017 2 316-338 |
allfieldsSound |
10.1016/j.jpaa.2016.06.011 doi PQ20170721 (DE-627)OLC1990361390 (DE-599)GBVOLC1990361390 (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups DE-627 ger DE-627 rakwb eng 510 DNB SA 6440 AVZ rvk 31.20 bkl Bardakov, Valeriy G verfasserin aut Palindromic automorphisms of free nilpotent groups 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. Group Theory 20E36 20E05 Mathematics 20F28 Gongopadhyay, Krishnendu oth Neshchadim, Mikhail V oth Singh, Mahender oth Enthalten in Journal of pure and applied algebra Amsterdam : North-Holland Publ., 1971 221(2017), 2, Seite 316-338 (DE-627)129289094 (DE-600)120150-5 (DE-576)014470624 0022-4049 nnns volume:221 year:2017 number:2 pages:316-338 http://dx.doi.org/10.1016/j.jpaa.2016.06.011 Volltext http://arxiv.org/abs/1506.03195 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4027 SA 6440 31.20 AVZ AR 221 2017 2 316-338 |
language |
English |
source |
Enthalten in Journal of pure and applied algebra 221(2017), 2, Seite 316-338 volume:221 year:2017 number:2 pages:316-338 |
sourceStr |
Enthalten in Journal of pure and applied algebra 221(2017), 2, Seite 316-338 volume:221 year:2017 number:2 pages:316-338 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Group Theory 20E36 20E05 Mathematics 20F28 |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of pure and applied algebra |
authorswithroles_txt_mv |
Bardakov, Valeriy G @@aut@@ Gongopadhyay, Krishnendu @@oth@@ Neshchadim, Mikhail V @@oth@@ Singh, Mahender @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129289094 |
dewey-sort |
3510 |
id |
OLC1990361390 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1990361390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216183344.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170303s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpaa.2016.06.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1990361390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1990361390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6440</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bardakov, Valeriy G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Palindromic automorphisms of free nilpotent groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20E36</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20E05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20F28</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gongopadhyay, Krishnendu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neshchadim, Mikhail V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Mahender</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of pure and applied algebra</subfield><subfield code="d">Amsterdam : North-Holland Publ., 1971</subfield><subfield code="g">221(2017), 2, Seite 316-338</subfield><subfield code="w">(DE-627)129289094</subfield><subfield code="w">(DE-600)120150-5</subfield><subfield code="w">(DE-576)014470624</subfield><subfield code="x">0022-4049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:316-338</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jpaa.2016.06.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1506.03195</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6440</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.20</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">316-338</subfield></datafield></record></collection>
|
author |
Bardakov, Valeriy G |
spellingShingle |
Bardakov, Valeriy G ddc 510 rvk SA 6440 bkl 31.20 misc Group Theory misc 20E36 misc 20E05 misc Mathematics misc 20F28 Palindromic automorphisms of free nilpotent groups |
authorStr |
Bardakov, Valeriy G |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129289094 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-4049 |
topic_title |
510 DNB SA 6440 AVZ rvk 31.20 bkl Palindromic automorphisms of free nilpotent groups Group Theory 20E36 20E05 Mathematics 20F28 |
topic |
ddc 510 rvk SA 6440 bkl 31.20 misc Group Theory misc 20E36 misc 20E05 misc Mathematics misc 20F28 |
topic_unstemmed |
ddc 510 rvk SA 6440 bkl 31.20 misc Group Theory misc 20E36 misc 20E05 misc Mathematics misc 20F28 |
topic_browse |
ddc 510 rvk SA 6440 bkl 31.20 misc Group Theory misc 20E36 misc 20E05 misc Mathematics misc 20F28 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k g kg m v n mv mvn m s ms |
hierarchy_parent_title |
Journal of pure and applied algebra |
hierarchy_parent_id |
129289094 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of pure and applied algebra |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129289094 (DE-600)120150-5 (DE-576)014470624 |
title |
Palindromic automorphisms of free nilpotent groups |
ctrlnum |
(DE-627)OLC1990361390 (DE-599)GBVOLC1990361390 (PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80 (KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups |
title_full |
Palindromic automorphisms of free nilpotent groups |
author_sort |
Bardakov, Valeriy G |
journal |
Journal of pure and applied algebra |
journalStr |
Journal of pure and applied algebra |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
316 |
author_browse |
Bardakov, Valeriy G |
container_volume |
221 |
class |
510 DNB SA 6440 AVZ rvk 31.20 bkl |
format_se |
Aufsätze |
author-letter |
Bardakov, Valeriy G |
doi_str_mv |
10.1016/j.jpaa.2016.06.011 |
dewey-full |
510 |
title_sort |
palindromic automorphisms of free nilpotent groups |
title_auth |
Palindromic automorphisms of free nilpotent groups |
abstract |
In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. |
abstractGer |
In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. |
abstract_unstemmed |
In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2005 GBV_ILN_4027 |
container_issue |
2 |
title_short |
Palindromic automorphisms of free nilpotent groups |
url |
http://dx.doi.org/10.1016/j.jpaa.2016.06.011 http://arxiv.org/abs/1506.03195 |
remote_bool |
false |
author2 |
Gongopadhyay, Krishnendu Neshchadim, Mikhail V Singh, Mahender |
author2Str |
Gongopadhyay, Krishnendu Neshchadim, Mikhail V Singh, Mahender |
ppnlink |
129289094 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jpaa.2016.06.011 |
up_date |
2024-07-04T00:41:20.882Z |
_version_ |
1803607008489766912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1990361390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216183344.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170303s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpaa.2016.06.011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1990361390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1990361390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1415-3e086c16a1461eb38386bf2514078bd96dfafc391b9d995402b8d094d7e474b80</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0029127720170000221000200316palindromicautomorphismsoffreenilpotentgroups</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6440</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bardakov, Valeriy G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Palindromic automorphisms of free nilpotent groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we initiate the study of palindromic automorphisms of groups that are free in some variety. More specifically, we define palindromic automorphisms of free nilpotent groups and show that the set of such automorphisms is a group. We find a generating set for the group of palindromic automorphisms of free nilpotent groups of step 2 and 3. In particular, we obtain a generating set for the group of central palindromic automorphisms of these groups. In the end, we determine central palindromic automorphisms of free nilpotent groups of step 3 which satisfy the necessary condition of Bryant-Gupta-Levin-Mochizuki for a central automorphism to be tame.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20E36</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20E05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20F28</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gongopadhyay, Krishnendu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neshchadim, Mikhail V</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Mahender</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of pure and applied algebra</subfield><subfield code="d">Amsterdam : North-Holland Publ., 1971</subfield><subfield code="g">221(2017), 2, Seite 316-338</subfield><subfield code="w">(DE-627)129289094</subfield><subfield code="w">(DE-600)120150-5</subfield><subfield code="w">(DE-576)014470624</subfield><subfield code="x">0022-4049</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:221</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:316-338</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jpaa.2016.06.011</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1506.03195</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6440</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.20</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">221</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">316-338</subfield></datafield></record></collection>
|
score |
7.399102 |