On the Exploitation of Admittance Measurements for Wired Network Topology Derivation
The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and...
Ausführliche Beschreibung
Autor*in: |
Passerini, Federico [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
power line communications (PLCs) |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on instrumentation and measurement - New York, NY, 1963, 66(2017), 3, Seite 374-382 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2017 ; number:3 ; pages:374-382 |
Links: |
---|
DOI / URN: |
10.1109/TIM.2016.2636478 |
---|
Katalog-ID: |
OLC1990767893 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1990767893 | ||
003 | DE-627 | ||
005 | 20220221042248.0 | ||
007 | tu | ||
008 | 170303s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIM.2016.2636478 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1990767893 | ||
035 | |a (DE-599)GBVOLC1990767893 | ||
035 | |a (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 | ||
035 | |a (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 50.21 |2 bkl | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Passerini, Federico |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Exploitation of Admittance Measurements for Wired Network Topology Derivation |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. | ||
650 | 4 | |a DSL | |
650 | 4 | |a Admittance | |
650 | 4 | |a power line communications (PLCs) | |
650 | 4 | |a Transmission line measurements | |
650 | 4 | |a transmission line (TL) theory | |
650 | 4 | |a Topology | |
650 | 4 | |a smart microgrids (SMG) | |
650 | 4 | |a Estimation | |
650 | 4 | |a distribution networks | |
650 | 4 | |a topology derivation | |
650 | 4 | |a Admittance measurement | |
650 | 4 | |a Network topology | |
700 | 1 | |a Tonello, Andrea M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on instrumentation and measurement |d New York, NY, 1963 |g 66(2017), 3, Seite 374-382 |w (DE-627)129358576 |w (DE-600)160442-9 |w (DE-576)014730863 |x 0018-9456 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2017 |g number:3 |g pages:374-382 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIM.2016.2636478 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7797477 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2061 | ||
936 | b | k | |a 50.21 |q AVZ |
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 66 |j 2017 |e 3 |h 374-382 |
author_variant |
f p fp |
---|---|
matchkey_str |
article:00189456:2017----::nhepottooamtacmaueetfriento |
hierarchy_sort_str |
2017 |
bklnumber |
50.21 53.00 |
publishDate |
2017 |
allfields |
10.1109/TIM.2016.2636478 doi PQ20170301 (DE-627)OLC1990767893 (DE-599)GBVOLC1990767893 (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Passerini, Federico verfasserin aut On the Exploitation of Admittance Measurements for Wired Network Topology Derivation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology Tonello, Andrea M oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 3, Seite 374-382 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:3 pages:374-382 http://dx.doi.org/10.1109/TIM.2016.2636478 Volltext http://ieeexplore.ieee.org/document/7797477 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 3 374-382 |
spelling |
10.1109/TIM.2016.2636478 doi PQ20170301 (DE-627)OLC1990767893 (DE-599)GBVOLC1990767893 (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Passerini, Federico verfasserin aut On the Exploitation of Admittance Measurements for Wired Network Topology Derivation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology Tonello, Andrea M oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 3, Seite 374-382 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:3 pages:374-382 http://dx.doi.org/10.1109/TIM.2016.2636478 Volltext http://ieeexplore.ieee.org/document/7797477 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 3 374-382 |
allfields_unstemmed |
10.1109/TIM.2016.2636478 doi PQ20170301 (DE-627)OLC1990767893 (DE-599)GBVOLC1990767893 (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Passerini, Federico verfasserin aut On the Exploitation of Admittance Measurements for Wired Network Topology Derivation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology Tonello, Andrea M oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 3, Seite 374-382 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:3 pages:374-382 http://dx.doi.org/10.1109/TIM.2016.2636478 Volltext http://ieeexplore.ieee.org/document/7797477 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 3 374-382 |
allfieldsGer |
10.1109/TIM.2016.2636478 doi PQ20170301 (DE-627)OLC1990767893 (DE-599)GBVOLC1990767893 (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Passerini, Federico verfasserin aut On the Exploitation of Admittance Measurements for Wired Network Topology Derivation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology Tonello, Andrea M oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 3, Seite 374-382 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:3 pages:374-382 http://dx.doi.org/10.1109/TIM.2016.2636478 Volltext http://ieeexplore.ieee.org/document/7797477 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 3 374-382 |
allfieldsSound |
10.1109/TIM.2016.2636478 doi PQ20170301 (DE-627)OLC1990767893 (DE-599)GBVOLC1990767893 (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Passerini, Federico verfasserin aut On the Exploitation of Admittance Measurements for Wired Network Topology Derivation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology Tonello, Andrea M oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 66(2017), 3, Seite 374-382 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:66 year:2017 number:3 pages:374-382 http://dx.doi.org/10.1109/TIM.2016.2636478 Volltext http://ieeexplore.ieee.org/document/7797477 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 66 2017 3 374-382 |
language |
English |
source |
Enthalten in IEEE transactions on instrumentation and measurement 66(2017), 3, Seite 374-382 volume:66 year:2017 number:3 pages:374-382 |
sourceStr |
Enthalten in IEEE transactions on instrumentation and measurement 66(2017), 3, Seite 374-382 volume:66 year:2017 number:3 pages:374-382 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on instrumentation and measurement |
authorswithroles_txt_mv |
Passerini, Federico @@aut@@ Tonello, Andrea M @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129358576 |
dewey-sort |
3620 |
id |
OLC1990767893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1990767893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221042248.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170303s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIM.2016.2636478</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1990767893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1990767893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Passerini, Federico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Exploitation of Admittance Measurements for Wired Network Topology Derivation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DSL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admittance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power line communications (PLCs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission line measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmission line (TL) theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart microgrids (SMG)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distribution networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology derivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admittance measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tonello, Andrea M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on instrumentation and measurement</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">66(2017), 3, Seite 374-382</subfield><subfield code="w">(DE-627)129358576</subfield><subfield code="w">(DE-600)160442-9</subfield><subfield code="w">(DE-576)014730863</subfield><subfield code="x">0018-9456</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:374-382</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIM.2016.2636478</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7797477</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">374-382</subfield></datafield></record></collection>
|
author |
Passerini, Federico |
spellingShingle |
Passerini, Federico ddc 620 bkl 50.21 bkl 53.00 misc DSL misc Admittance misc power line communications (PLCs) misc Transmission line measurements misc transmission line (TL) theory misc Topology misc smart microgrids (SMG) misc Estimation misc distribution networks misc topology derivation misc Admittance measurement misc Network topology On the Exploitation of Admittance Measurements for Wired Network Topology Derivation |
authorStr |
Passerini, Federico |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358576 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9456 |
topic_title |
620 DNB 50.21 bkl 53.00 bkl On the Exploitation of Admittance Measurements for Wired Network Topology Derivation DSL Admittance power line communications (PLCs) Transmission line measurements transmission line (TL) theory Topology smart microgrids (SMG) Estimation distribution networks topology derivation Admittance measurement Network topology |
topic |
ddc 620 bkl 50.21 bkl 53.00 misc DSL misc Admittance misc power line communications (PLCs) misc Transmission line measurements misc transmission line (TL) theory misc Topology misc smart microgrids (SMG) misc Estimation misc distribution networks misc topology derivation misc Admittance measurement misc Network topology |
topic_unstemmed |
ddc 620 bkl 50.21 bkl 53.00 misc DSL misc Admittance misc power line communications (PLCs) misc Transmission line measurements misc transmission line (TL) theory misc Topology misc smart microgrids (SMG) misc Estimation misc distribution networks misc topology derivation misc Admittance measurement misc Network topology |
topic_browse |
ddc 620 bkl 50.21 bkl 53.00 misc DSL misc Admittance misc power line communications (PLCs) misc Transmission line measurements misc transmission line (TL) theory misc Topology misc smart microgrids (SMG) misc Estimation misc distribution networks misc topology derivation misc Admittance measurement misc Network topology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a m t am amt |
hierarchy_parent_title |
IEEE transactions on instrumentation and measurement |
hierarchy_parent_id |
129358576 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on instrumentation and measurement |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 |
title |
On the Exploitation of Admittance Measurements for Wired Network Topology Derivation |
ctrlnum |
(DE-627)OLC1990767893 (DE-599)GBVOLC1990767893 (PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50 (KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn |
title_full |
On the Exploitation of Admittance Measurements for Wired Network Topology Derivation |
author_sort |
Passerini, Federico |
journal |
IEEE transactions on instrumentation and measurement |
journalStr |
IEEE transactions on instrumentation and measurement |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
374 |
author_browse |
Passerini, Federico |
container_volume |
66 |
class |
620 DNB 50.21 bkl 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Passerini, Federico |
doi_str_mv |
10.1109/TIM.2016.2636478 |
dewey-full |
620 |
title_sort |
on the exploitation of admittance measurements for wired network topology derivation |
title_auth |
On the Exploitation of Admittance Measurements for Wired Network Topology Derivation |
abstract |
The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. |
abstractGer |
The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. |
abstract_unstemmed |
The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 |
container_issue |
3 |
title_short |
On the Exploitation of Admittance Measurements for Wired Network Topology Derivation |
url |
http://dx.doi.org/10.1109/TIM.2016.2636478 http://ieeexplore.ieee.org/document/7797477 |
remote_bool |
false |
author2 |
Tonello, Andrea M |
author2Str |
Tonello, Andrea M |
ppnlink |
129358576 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TIM.2016.2636478 |
up_date |
2024-07-04T01:50:56.326Z |
_version_ |
1803611386755940352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1990767893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221042248.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170303s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIM.2016.2636478</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1990767893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1990767893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c949-7a4fefa1e73203a1400427239b5baa5cb0ed426a9216c42724297102e1787ca50</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079426020170000066000300374ontheexploitationofadmittancemeasurementsforwiredn</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Passerini, Federico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Exploitation of Admittance Measurements for Wired Network Topology Derivation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The knowledge of the topology of a wired network is often of fundamental importance. For instance, in the context of power line communications networks it is helpful to implement data routing strategies, while in power distribution networks and smart microgrids it is required for grid monitoring and for power flow management. In this paper, we use the transmission line theory to shed new light and to show how the topological properties of a wired network can be found exploiting admittance measurements at the nodes. An analytic proof is reported to show that the derivation of the topology can be done in complex networks under certain assumptions. We also analyze the effect of the network background noise on admittance measurements. In this respect, we propose a topology derivation algorithm that works in the presence of noise. We finally analyze the performance of the algorithm in a setup that is typical of power line distribution networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DSL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admittance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power line communications (PLCs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission line measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmission line (TL) theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart microgrids (SMG)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distribution networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology derivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Admittance measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tonello, Andrea M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on instrumentation and measurement</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">66(2017), 3, Seite 374-382</subfield><subfield code="w">(DE-627)129358576</subfield><subfield code="w">(DE-600)160442-9</subfield><subfield code="w">(DE-576)014730863</subfield><subfield code="x">0018-9456</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:374-382</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIM.2016.2636478</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7797477</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">374-382</subfield></datafield></record></collection>
|
score |
7.401613 |