Cold sintering process: A new era for ceramic packaging and microwave device development
Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and...
Ausführliche Beschreibung
Autor*in: |
Guo, Jing [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 The American Ceramic Society |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the American Ceramic Society - Malden [u.a.] : Blackwell Publishing, 1918, 100(2017), 2, Seite 669-677 |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2017 ; number:2 ; pages:669-677 |
Links: |
---|
DOI / URN: |
10.1111/jace.14603 |
---|
Katalog-ID: |
OLC1990901662 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1990901662 | ||
003 | DE-627 | ||
005 | 20230715033033.0 | ||
007 | tu | ||
008 | 170303s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1111/jace.14603 |2 doi | |
028 | 5 | 2 | |a PQ20170301 |
035 | |a (DE-627)OLC1990901662 | ||
035 | |a (DE-599)GBVOLC1990901662 | ||
035 | |a (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 | ||
035 | |a (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DNB |
100 | 1 | |a Guo, Jing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cold sintering process: A new era for ceramic packaging and microwave device development |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. | ||
540 | |a Nutzungsrecht: © 2016 The American Ceramic Society | ||
650 | 4 | |a ceramic‐polymer composites | |
650 | 4 | |a ceramics | |
650 | 4 | |a co‐fired ceramics | |
650 | 4 | |a cold sintering process | |
650 | 4 | |a microwave dielectric materials | |
700 | 1 | |a Baker, Amanda L |4 oth | |
700 | 1 | |a Guo, Hanzheng |4 oth | |
700 | 1 | |a Lanagan, Michael |4 oth | |
700 | 1 | |a Randall, Clive A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of the American Ceramic Society |d Malden [u.a.] : Blackwell Publishing, 1918 |g 100(2017), 2, Seite 669-677 |w (DE-627)129550272 |w (DE-600)219232-9 |w (DE-576)015003671 |x 0002-7820 |7 nnns |
773 | 1 | 8 | |g volume:100 |g year:2017 |g number:2 |g pages:669-677 |
856 | 4 | 1 | |u http://dx.doi.org/10.1111/jace.14603 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1867883440 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 100 |j 2017 |e 2 |h 669-677 |
author_variant |
j g jg |
---|---|
matchkey_str |
article:00027820:2017----::oditrnpoesnwrfreaipcaignmco |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1111/jace.14603 doi PQ20170301 (DE-627)OLC1990901662 (DE-599)GBVOLC1990901662 (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm DE-627 ger DE-627 rakwb eng 660 DNB Guo, Jing verfasserin aut Cold sintering process: A new era for ceramic packaging and microwave device development 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. Nutzungsrecht: © 2016 The American Ceramic Society ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials Baker, Amanda L oth Guo, Hanzheng oth Lanagan, Michael oth Randall, Clive A oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 100(2017), 2, Seite 669-677 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:100 year:2017 number:2 pages:669-677 http://dx.doi.org/10.1111/jace.14603 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract http://search.proquest.com/docview/1867883440 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 100 2017 2 669-677 |
spelling |
10.1111/jace.14603 doi PQ20170301 (DE-627)OLC1990901662 (DE-599)GBVOLC1990901662 (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm DE-627 ger DE-627 rakwb eng 660 DNB Guo, Jing verfasserin aut Cold sintering process: A new era for ceramic packaging and microwave device development 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. Nutzungsrecht: © 2016 The American Ceramic Society ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials Baker, Amanda L oth Guo, Hanzheng oth Lanagan, Michael oth Randall, Clive A oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 100(2017), 2, Seite 669-677 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:100 year:2017 number:2 pages:669-677 http://dx.doi.org/10.1111/jace.14603 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract http://search.proquest.com/docview/1867883440 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 100 2017 2 669-677 |
allfields_unstemmed |
10.1111/jace.14603 doi PQ20170301 (DE-627)OLC1990901662 (DE-599)GBVOLC1990901662 (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm DE-627 ger DE-627 rakwb eng 660 DNB Guo, Jing verfasserin aut Cold sintering process: A new era for ceramic packaging and microwave device development 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. Nutzungsrecht: © 2016 The American Ceramic Society ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials Baker, Amanda L oth Guo, Hanzheng oth Lanagan, Michael oth Randall, Clive A oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 100(2017), 2, Seite 669-677 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:100 year:2017 number:2 pages:669-677 http://dx.doi.org/10.1111/jace.14603 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract http://search.proquest.com/docview/1867883440 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 100 2017 2 669-677 |
allfieldsGer |
10.1111/jace.14603 doi PQ20170301 (DE-627)OLC1990901662 (DE-599)GBVOLC1990901662 (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm DE-627 ger DE-627 rakwb eng 660 DNB Guo, Jing verfasserin aut Cold sintering process: A new era for ceramic packaging and microwave device development 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. Nutzungsrecht: © 2016 The American Ceramic Society ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials Baker, Amanda L oth Guo, Hanzheng oth Lanagan, Michael oth Randall, Clive A oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 100(2017), 2, Seite 669-677 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:100 year:2017 number:2 pages:669-677 http://dx.doi.org/10.1111/jace.14603 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract http://search.proquest.com/docview/1867883440 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 100 2017 2 669-677 |
allfieldsSound |
10.1111/jace.14603 doi PQ20170301 (DE-627)OLC1990901662 (DE-599)GBVOLC1990901662 (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm DE-627 ger DE-627 rakwb eng 660 DNB Guo, Jing verfasserin aut Cold sintering process: A new era for ceramic packaging and microwave device development 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. Nutzungsrecht: © 2016 The American Ceramic Society ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials Baker, Amanda L oth Guo, Hanzheng oth Lanagan, Michael oth Randall, Clive A oth Enthalten in Journal of the American Ceramic Society Malden [u.a.] : Blackwell Publishing, 1918 100(2017), 2, Seite 669-677 (DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 0002-7820 nnns volume:100 year:2017 number:2 pages:669-677 http://dx.doi.org/10.1111/jace.14603 Volltext http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract http://search.proquest.com/docview/1867883440 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 AR 100 2017 2 669-677 |
language |
English |
source |
Enthalten in Journal of the American Ceramic Society 100(2017), 2, Seite 669-677 volume:100 year:2017 number:2 pages:669-677 |
sourceStr |
Enthalten in Journal of the American Ceramic Society 100(2017), 2, Seite 669-677 volume:100 year:2017 number:2 pages:669-677 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of the American Ceramic Society |
authorswithroles_txt_mv |
Guo, Jing @@aut@@ Baker, Amanda L @@oth@@ Guo, Hanzheng @@oth@@ Lanagan, Michael @@oth@@ Randall, Clive A @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129550272 |
dewey-sort |
3660 |
id |
OLC1990901662 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1990901662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715033033.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170303s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/jace.14603</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1990901662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1990901662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cold sintering process: A new era for ceramic packaging and microwave device development</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 The American Ceramic Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceramic‐polymer composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceramics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co‐fired ceramics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold sintering process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microwave dielectric materials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, Amanda L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Hanzheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lanagan, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Randall, Clive A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the American Ceramic Society</subfield><subfield code="d">Malden [u.a.] : Blackwell Publishing, 1918</subfield><subfield code="g">100(2017), 2, Seite 669-677</subfield><subfield code="w">(DE-627)129550272</subfield><subfield code="w">(DE-600)219232-9</subfield><subfield code="w">(DE-576)015003671</subfield><subfield code="x">0002-7820</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:669-677</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/jace.14603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1867883440</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">669-677</subfield></datafield></record></collection>
|
author |
Guo, Jing |
spellingShingle |
Guo, Jing ddc 660 misc ceramic‐polymer composites misc ceramics misc co‐fired ceramics misc cold sintering process misc microwave dielectric materials Cold sintering process: A new era for ceramic packaging and microwave device development |
authorStr |
Guo, Jing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129550272 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0002-7820 |
topic_title |
660 DNB Cold sintering process: A new era for ceramic packaging and microwave device development ceramic‐polymer composites ceramics co‐fired ceramics cold sintering process microwave dielectric materials |
topic |
ddc 660 misc ceramic‐polymer composites misc ceramics misc co‐fired ceramics misc cold sintering process misc microwave dielectric materials |
topic_unstemmed |
ddc 660 misc ceramic‐polymer composites misc ceramics misc co‐fired ceramics misc cold sintering process misc microwave dielectric materials |
topic_browse |
ddc 660 misc ceramic‐polymer composites misc ceramics misc co‐fired ceramics misc cold sintering process misc microwave dielectric materials |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a l b al alb h g hg m l ml c a r ca car |
hierarchy_parent_title |
Journal of the American Ceramic Society |
hierarchy_parent_id |
129550272 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of the American Ceramic Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129550272 (DE-600)219232-9 (DE-576)015003671 |
title |
Cold sintering process: A new era for ceramic packaging and microwave device development |
ctrlnum |
(DE-627)OLC1990901662 (DE-599)GBVOLC1990901662 (PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0 (KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm |
title_full |
Cold sintering process: A new era for ceramic packaging and microwave device development |
author_sort |
Guo, Jing |
journal |
Journal of the American Ceramic Society |
journalStr |
Journal of the American Ceramic Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
669 |
author_browse |
Guo, Jing |
container_volume |
100 |
class |
660 DNB |
format_se |
Aufsätze |
author-letter |
Guo, Jing |
doi_str_mv |
10.1111/jace.14603 |
dewey-full |
660 |
title_sort |
cold sintering process: a new era for ceramic packaging and microwave device development |
title_auth |
Cold sintering process: A new era for ceramic packaging and microwave device development |
abstract |
Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. |
abstractGer |
Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. |
abstract_unstemmed |
Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2014 |
container_issue |
2 |
title_short |
Cold sintering process: A new era for ceramic packaging and microwave device development |
url |
http://dx.doi.org/10.1111/jace.14603 http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract http://search.proquest.com/docview/1867883440 |
remote_bool |
false |
author2 |
Baker, Amanda L Guo, Hanzheng Lanagan, Michael Randall, Clive A |
author2Str |
Baker, Amanda L Guo, Hanzheng Lanagan, Michael Randall, Clive A |
ppnlink |
129550272 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1111/jace.14603 |
up_date |
2024-07-04T02:09:38.640Z |
_version_ |
1803612563588513792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1990901662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715033033.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170303s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/jace.14603</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1990901662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1990901662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1293-e3ca7c0523a27db3b5789579ed67482482f57ad0da0e218f36406d3674944d1c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108608120170000100000200669coldsinteringprocessaneweraforceramicpackagingandm</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cold sintering process: A new era for ceramic packaging and microwave device development</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cold sintering process ( CSP ) is an extremely low‐temperature sintering process (room temperature to ~200°C) that uses aqueous‐based solutions as transient solvents to aid densification by a nonequilibrium dissolution‐precipitation process. In this work, CSP is introduced to fabricate microwave and packaging dielectric substrates, including ceramics (bulk monolithic substrates and multilayers) and ceramic‐polymer composites. Some dielectric materials, namely Li 2 MoO 4 , Na 2 Mo 2 O 7 , K 2 Mo 2 O 7 , and (LiBi) 0.5 MoO 4 ceramics, and also (1− x )Li 2 MoO 4 − x PTFE and (1− x )(LiBi) 0.5 MoO 4 − x PTFE composites, are selected to demonstrate the feasibility of CSP in microwave and packaging substrate applications. Selected dielectric ceramics and composites with high densities (88%‐95%) and good microwave dielectric properties (permittivity, 5.6‐37.1; Q × f , 1700‐30 500 GH z) were obtained by CSP at 120°C. CSP can be also used to potentially develop a new co‐fired ceramic technology, namely CSCC . Li 2 MoO 4 −Ag multilayer co‐fired ceramic structures were successfully fabricated without obvious delamination, warping, or interdiffusion. Numerous materials with different dielectric properties can be densified by CSP , indicating that CSP provides a simple, effective, and energy‐saving strategy for the ceramic packaging and microwave device development.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 The American Ceramic Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceramic‐polymer composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ceramics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co‐fired ceramics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cold sintering process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microwave dielectric materials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, Amanda L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Hanzheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lanagan, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Randall, Clive A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the American Ceramic Society</subfield><subfield code="d">Malden [u.a.] : Blackwell Publishing, 1918</subfield><subfield code="g">100(2017), 2, Seite 669-677</subfield><subfield code="w">(DE-627)129550272</subfield><subfield code="w">(DE-600)219232-9</subfield><subfield code="w">(DE-576)015003671</subfield><subfield code="x">0002-7820</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:669-677</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/jace.14603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/jace.14603/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1867883440</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">669-677</subfield></datafield></record></collection>
|
score |
7.401613 |