Efficient Algorithms for Noisy Group Testing
Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX"&...
Ausführliche Beschreibung
Autor*in: |
Cai, Sheng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on information theory - Piscataway, NJ : IEEE, 1963, 63(2017), 4, Seite 2113-2136 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2017 ; number:4 ; pages:2113-2136 |
Links: |
---|
DOI / URN: |
10.1109/TIT.2017.2659619 |
---|
Katalog-ID: |
OLC1992036233 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1992036233 | ||
003 | DE-627 | ||
005 | 20220221163313.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIT.2017.2659619 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1992036233 | ||
035 | |a (DE-599)GBVOLC1992036233 | ||
035 | |a (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 | ||
035 | |a (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 620 |q DNB |
084 | |a SA 5570 |q AVZ |2 rvk | ||
100 | 1 | |a Cai, Sheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient Algorithms for Noisy Group Testing |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. | ||
650 | 4 | |a bipartite graph | |
650 | 4 | |a Decoding | |
650 | 4 | |a encoding | |
650 | 4 | |a Algorithm design and analysis | |
650 | 4 | |a greedy algorithms | |
650 | 4 | |a random variables | |
650 | 4 | |a Reconstruction algorithms | |
650 | 4 | |a Testing | |
650 | 4 | |a Complexity theory | |
650 | 4 | |a Adaptive algorithms | |
650 | 4 | |a Noise measurement | |
650 | 4 | |a error correction codes | |
700 | 1 | |a Jahangoshahi, Mohammad |4 oth | |
700 | 1 | |a Bakshi, Mayank |4 oth | |
700 | 1 | |a Jaggi, Sidharth |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on information theory |d Piscataway, NJ : IEEE, 1963 |g 63(2017), 4, Seite 2113-2136 |w (DE-627)12954731X |w (DE-600)218505-2 |w (DE-576)01499819X |x 0018-9448 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2017 |g number:4 |g pages:2113-2136 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIT.2017.2659619 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7835117 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
936 | r | v | |a SA 5570 |
951 | |a AR | ||
952 | |d 63 |j 2017 |e 4 |h 2113-2136 |
author_variant |
s c sc |
---|---|
matchkey_str |
article:00189448:2017----::fiinagrtmfros |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TIT.2017.2659619 doi PQ20170501 (DE-627)OLC1992036233 (DE-599)GBVOLC1992036233 (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Cai, Sheng verfasserin aut Efficient Algorithms for Noisy Group Testing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes Jahangoshahi, Mohammad oth Bakshi, Mayank oth Jaggi, Sidharth oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 63(2017), 4, Seite 2113-2136 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:63 year:2017 number:4 pages:2113-2136 http://dx.doi.org/10.1109/TIT.2017.2659619 Volltext http://ieeexplore.ieee.org/document/7835117 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 63 2017 4 2113-2136 |
spelling |
10.1109/TIT.2017.2659619 doi PQ20170501 (DE-627)OLC1992036233 (DE-599)GBVOLC1992036233 (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Cai, Sheng verfasserin aut Efficient Algorithms for Noisy Group Testing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes Jahangoshahi, Mohammad oth Bakshi, Mayank oth Jaggi, Sidharth oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 63(2017), 4, Seite 2113-2136 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:63 year:2017 number:4 pages:2113-2136 http://dx.doi.org/10.1109/TIT.2017.2659619 Volltext http://ieeexplore.ieee.org/document/7835117 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 63 2017 4 2113-2136 |
allfields_unstemmed |
10.1109/TIT.2017.2659619 doi PQ20170501 (DE-627)OLC1992036233 (DE-599)GBVOLC1992036233 (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Cai, Sheng verfasserin aut Efficient Algorithms for Noisy Group Testing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes Jahangoshahi, Mohammad oth Bakshi, Mayank oth Jaggi, Sidharth oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 63(2017), 4, Seite 2113-2136 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:63 year:2017 number:4 pages:2113-2136 http://dx.doi.org/10.1109/TIT.2017.2659619 Volltext http://ieeexplore.ieee.org/document/7835117 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 63 2017 4 2113-2136 |
allfieldsGer |
10.1109/TIT.2017.2659619 doi PQ20170501 (DE-627)OLC1992036233 (DE-599)GBVOLC1992036233 (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Cai, Sheng verfasserin aut Efficient Algorithms for Noisy Group Testing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes Jahangoshahi, Mohammad oth Bakshi, Mayank oth Jaggi, Sidharth oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 63(2017), 4, Seite 2113-2136 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:63 year:2017 number:4 pages:2113-2136 http://dx.doi.org/10.1109/TIT.2017.2659619 Volltext http://ieeexplore.ieee.org/document/7835117 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 63 2017 4 2113-2136 |
allfieldsSound |
10.1109/TIT.2017.2659619 doi PQ20170501 (DE-627)OLC1992036233 (DE-599)GBVOLC1992036233 (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Cai, Sheng verfasserin aut Efficient Algorithms for Noisy Group Testing 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes Jahangoshahi, Mohammad oth Bakshi, Mayank oth Jaggi, Sidharth oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 63(2017), 4, Seite 2113-2136 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:63 year:2017 number:4 pages:2113-2136 http://dx.doi.org/10.1109/TIT.2017.2659619 Volltext http://ieeexplore.ieee.org/document/7835117 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 63 2017 4 2113-2136 |
language |
English |
source |
Enthalten in IEEE transactions on information theory 63(2017), 4, Seite 2113-2136 volume:63 year:2017 number:4 pages:2113-2136 |
sourceStr |
Enthalten in IEEE transactions on information theory 63(2017), 4, Seite 2113-2136 volume:63 year:2017 number:4 pages:2113-2136 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on information theory |
authorswithroles_txt_mv |
Cai, Sheng @@aut@@ Jahangoshahi, Mohammad @@oth@@ Bakshi, Mayank @@oth@@ Jaggi, Sidharth @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
12954731X |
dewey-sort |
270 |
id |
OLC1992036233 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992036233</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163313.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2017.2659619</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992036233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992036233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Sheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Algorithms for Noisy Group Testing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipartite graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm design and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greedy algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconstruction algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error correction codes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jahangoshahi, Mohammad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bakshi, Mayank</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaggi, Sidharth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">63(2017), 4, Seite 2113-2136</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:2113-2136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2017.2659619</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7835117</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">2113-2136</subfield></datafield></record></collection>
|
author |
Cai, Sheng |
spellingShingle |
Cai, Sheng ddc 070 rvk SA 5570 misc bipartite graph misc Decoding misc encoding misc Algorithm design and analysis misc greedy algorithms misc random variables misc Reconstruction algorithms misc Testing misc Complexity theory misc Adaptive algorithms misc Noise measurement misc error correction codes Efficient Algorithms for Noisy Group Testing |
authorStr |
Cai, Sheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12954731X |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9448 |
topic_title |
070 620 DNB SA 5570 AVZ rvk Efficient Algorithms for Noisy Group Testing bipartite graph Decoding encoding Algorithm design and analysis greedy algorithms random variables Reconstruction algorithms Testing Complexity theory Adaptive algorithms Noise measurement error correction codes |
topic |
ddc 070 rvk SA 5570 misc bipartite graph misc Decoding misc encoding misc Algorithm design and analysis misc greedy algorithms misc random variables misc Reconstruction algorithms misc Testing misc Complexity theory misc Adaptive algorithms misc Noise measurement misc error correction codes |
topic_unstemmed |
ddc 070 rvk SA 5570 misc bipartite graph misc Decoding misc encoding misc Algorithm design and analysis misc greedy algorithms misc random variables misc Reconstruction algorithms misc Testing misc Complexity theory misc Adaptive algorithms misc Noise measurement misc error correction codes |
topic_browse |
ddc 070 rvk SA 5570 misc bipartite graph misc Decoding misc encoding misc Algorithm design and analysis misc greedy algorithms misc random variables misc Reconstruction algorithms misc Testing misc Complexity theory misc Adaptive algorithms misc Noise measurement misc error correction codes |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m j mj m b mb s j sj |
hierarchy_parent_title |
IEEE transactions on information theory |
hierarchy_parent_id |
12954731X |
dewey-tens |
070 - News media, journalism & publishing 620 - Engineering |
hierarchy_top_title |
IEEE transactions on information theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X |
title |
Efficient Algorithms for Noisy Group Testing |
ctrlnum |
(DE-627)OLC1992036233 (DE-599)GBVOLC1992036233 (PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0 (KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting |
title_full |
Efficient Algorithms for Noisy Group Testing |
author_sort |
Cai, Sheng |
journal |
IEEE transactions on information theory |
journalStr |
IEEE transactions on information theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2113 |
author_browse |
Cai, Sheng |
container_volume |
63 |
class |
070 620 DNB SA 5570 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Cai, Sheng |
doi_str_mv |
10.1109/TIT.2017.2659619 |
dewey-full |
070 620 |
title_sort |
efficient algorithms for noisy group testing |
title_auth |
Efficient Algorithms for Noisy Group Testing |
abstract |
Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. |
abstractGer |
Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. |
abstract_unstemmed |
Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 |
container_issue |
4 |
title_short |
Efficient Algorithms for Noisy Group Testing |
url |
http://dx.doi.org/10.1109/TIT.2017.2659619 http://ieeexplore.ieee.org/document/7835117 |
remote_bool |
false |
author2 |
Jahangoshahi, Mohammad Bakshi, Mayank Jaggi, Sidharth |
author2Str |
Jahangoshahi, Mohammad Bakshi, Mayank Jaggi, Sidharth |
ppnlink |
12954731X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TIT.2017.2659619 |
up_date |
2024-07-04T04:08:05.804Z |
_version_ |
1803620015992209408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992036233</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163313.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2017.2659619</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992036233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992036233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1066-a90115a3c3080308c7c8de02c6d5d88d76b48561fe654cf7449d76df41386b0c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620170000063000402113efficientalgorithmsfornoisygrouptesting</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Sheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Algorithms for Noisy Group Testing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Group-testing refers to the problem of identifying (with high probability) a (small) subset of <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula> defectives from a (large) set of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items via a "small" number of "pooled" tests (i.e., tests that have a positive outcome if at least one of the items being tested in the pool is defective, else have a negative outcome). For ease of presentation in this paper, we focus on the regime when <inline-formula> <tex-math notation="LaTeX">D = \mathcal {O}(N^{1- {\delta }}) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX"> {\delta }> 0 </tex-math></inline-formula>. The tests may be noiseless or noisy , and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of the literature demonstrates that <inline-formula> <tex-math notation="LaTeX">\Theta (D\log (N)) </tex-math></inline-formula> tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexities that are sub-linear in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> have started being investigated. In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (N)}\right ) </tex-math></inline-formula> in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (<inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({\log (D)}\right ) </tex-math></inline-formula>). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({D\log (D)\log (N)}\right ) </tex-math></inline-formula> tests and has a decoding complexity of <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. Finally, we present an adaptive algorithm that only requires two stages, and for which both the number of tests and the decoding complexity scale as <inline-formula> <tex-math notation="LaTeX">{\mathcal{ O}}(D(\log N+\log ^{2}D)) </tex-math></inline-formula>. For all three settings, the probability of error of our algorithms scales as <inline-formula> <tex-math notation="LaTeX"> \mathcal {O}\left ({1/(poly(D)}\right ) </tex-math></inline-formula>. For each of the statements mentioned earlier about the order of the number of measurements, decoding complexity, and probability of error, we provide explicitly computed "small" universal factors in our theorem statements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipartite graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">encoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm design and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greedy algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconstruction algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">error correction codes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jahangoshahi, Mohammad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bakshi, Mayank</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaggi, Sidharth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">63(2017), 4, Seite 2113-2136</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:2113-2136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2017.2659619</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7835117</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">2113-2136</subfield></datafield></record></collection>
|
score |
7.4000845 |