Autonomous Flight Envelope Estimation for Loss-of-Control Prevention
A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic forc...
Ausführliche Beschreibung
Autor*in: |
Schuet, Stefan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of guidance, control, and dynamics - New York, NY, 1982, 40(2016), 4, Seite 847 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2016 ; number:4 ; pages:847 |
Links: |
---|
DOI / URN: |
10.2514/1.G001729 |
---|
Katalog-ID: |
OLC1992128146 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1992128146 | ||
003 | DE-627 | ||
005 | 20210716184108.0 | ||
007 | tu | ||
008 | 170512s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.2514/1.G001729 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1992128146 | ||
035 | |a (DE-599)GBVOLC1992128146 | ||
035 | |a (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 | ||
035 | |a (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q DNB |
100 | 1 | |a Schuet, Stefan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 | ||
700 | 1 | |a Lombaerts, Thomas |4 oth | |
700 | 1 | |a Acosta, Diana |4 oth | |
700 | 1 | |a Kaneshige, John |4 oth | |
700 | 1 | |a Wheeler, Kevin |4 oth | |
700 | 1 | |a Shish, Kimberlee |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of guidance, control, and dynamics |d New York, NY, 1982 |g 40(2016), 4, Seite 847 |w (DE-627)130551910 |w (DE-600)782987-5 |w (DE-576)016107497 |x 0731-5090 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2016 |g number:4 |g pages:847 |
856 | 4 | 1 | |u http://dx.doi.org/10.2514/1.G001729 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1891149015 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 40 |j 2016 |e 4 |h 847 |
author_variant |
s s ss |
---|---|
matchkey_str |
article:07315090:2016----::uoooslgtneoesiainolsoc |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.2514/1.G001729 doi PQ20170501 (DE-627)OLC1992128146 (DE-599)GBVOLC1992128146 (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol DE-627 ger DE-627 rakwb eng 380 DNB Schuet, Stefan verfasserin aut Autonomous Flight Envelope Estimation for Loss-of-Control Prevention 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 Lombaerts, Thomas oth Acosta, Diana oth Kaneshige, John oth Wheeler, Kevin oth Shish, Kimberlee oth Enthalten in Journal of guidance, control, and dynamics New York, NY, 1982 40(2016), 4, Seite 847 (DE-627)130551910 (DE-600)782987-5 (DE-576)016107497 0731-5090 nnns volume:40 year:2016 number:4 pages:847 http://dx.doi.org/10.2514/1.G001729 Volltext http://search.proquest.com/docview/1891149015 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4700 AR 40 2016 4 847 |
spelling |
10.2514/1.G001729 doi PQ20170501 (DE-627)OLC1992128146 (DE-599)GBVOLC1992128146 (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol DE-627 ger DE-627 rakwb eng 380 DNB Schuet, Stefan verfasserin aut Autonomous Flight Envelope Estimation for Loss-of-Control Prevention 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 Lombaerts, Thomas oth Acosta, Diana oth Kaneshige, John oth Wheeler, Kevin oth Shish, Kimberlee oth Enthalten in Journal of guidance, control, and dynamics New York, NY, 1982 40(2016), 4, Seite 847 (DE-627)130551910 (DE-600)782987-5 (DE-576)016107497 0731-5090 nnns volume:40 year:2016 number:4 pages:847 http://dx.doi.org/10.2514/1.G001729 Volltext http://search.proquest.com/docview/1891149015 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4700 AR 40 2016 4 847 |
allfields_unstemmed |
10.2514/1.G001729 doi PQ20170501 (DE-627)OLC1992128146 (DE-599)GBVOLC1992128146 (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol DE-627 ger DE-627 rakwb eng 380 DNB Schuet, Stefan verfasserin aut Autonomous Flight Envelope Estimation for Loss-of-Control Prevention 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 Lombaerts, Thomas oth Acosta, Diana oth Kaneshige, John oth Wheeler, Kevin oth Shish, Kimberlee oth Enthalten in Journal of guidance, control, and dynamics New York, NY, 1982 40(2016), 4, Seite 847 (DE-627)130551910 (DE-600)782987-5 (DE-576)016107497 0731-5090 nnns volume:40 year:2016 number:4 pages:847 http://dx.doi.org/10.2514/1.G001729 Volltext http://search.proquest.com/docview/1891149015 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4700 AR 40 2016 4 847 |
allfieldsGer |
10.2514/1.G001729 doi PQ20170501 (DE-627)OLC1992128146 (DE-599)GBVOLC1992128146 (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol DE-627 ger DE-627 rakwb eng 380 DNB Schuet, Stefan verfasserin aut Autonomous Flight Envelope Estimation for Loss-of-Control Prevention 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 Lombaerts, Thomas oth Acosta, Diana oth Kaneshige, John oth Wheeler, Kevin oth Shish, Kimberlee oth Enthalten in Journal of guidance, control, and dynamics New York, NY, 1982 40(2016), 4, Seite 847 (DE-627)130551910 (DE-600)782987-5 (DE-576)016107497 0731-5090 nnns volume:40 year:2016 number:4 pages:847 http://dx.doi.org/10.2514/1.G001729 Volltext http://search.proquest.com/docview/1891149015 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4700 AR 40 2016 4 847 |
allfieldsSound |
10.2514/1.G001729 doi PQ20170501 (DE-627)OLC1992128146 (DE-599)GBVOLC1992128146 (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol DE-627 ger DE-627 rakwb eng 380 DNB Schuet, Stefan verfasserin aut Autonomous Flight Envelope Estimation for Loss-of-Control Prevention 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 Lombaerts, Thomas oth Acosta, Diana oth Kaneshige, John oth Wheeler, Kevin oth Shish, Kimberlee oth Enthalten in Journal of guidance, control, and dynamics New York, NY, 1982 40(2016), 4, Seite 847 (DE-627)130551910 (DE-600)782987-5 (DE-576)016107497 0731-5090 nnns volume:40 year:2016 number:4 pages:847 http://dx.doi.org/10.2514/1.G001729 Volltext http://search.proquest.com/docview/1891149015 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4700 AR 40 2016 4 847 |
language |
English |
source |
Enthalten in Journal of guidance, control, and dynamics 40(2016), 4, Seite 847 volume:40 year:2016 number:4 pages:847 |
sourceStr |
Enthalten in Journal of guidance, control, and dynamics 40(2016), 4, Seite 847 volume:40 year:2016 number:4 pages:847 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
Journal of guidance, control, and dynamics |
authorswithroles_txt_mv |
Schuet, Stefan @@aut@@ Lombaerts, Thomas @@oth@@ Acosta, Diana @@oth@@ Kaneshige, John @@oth@@ Wheeler, Kevin @@oth@@ Shish, Kimberlee @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130551910 |
dewey-sort |
3380 |
id |
OLC1992128146 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992128146</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716184108.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2514/1.G001729</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992128146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992128146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schuet, Stefan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autonomous Flight Envelope Estimation for Loss-of-Control Prevention</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lombaerts, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Acosta, Diana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneshige, John</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wheeler, Kevin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shish, Kimberlee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of guidance, control, and dynamics</subfield><subfield code="d">New York, NY, 1982</subfield><subfield code="g">40(2016), 4, Seite 847</subfield><subfield code="w">(DE-627)130551910</subfield><subfield code="w">(DE-600)782987-5</subfield><subfield code="w">(DE-576)016107497</subfield><subfield code="x">0731-5090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:847</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.2514/1.G001729</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1891149015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">847</subfield></datafield></record></collection>
|
author |
Schuet, Stefan |
spellingShingle |
Schuet, Stefan ddc 380 Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
authorStr |
Schuet, Stefan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130551910 |
format |
Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0731-5090 |
topic_title |
380 DNB Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
topic |
ddc 380 |
topic_unstemmed |
ddc 380 |
topic_browse |
ddc 380 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t l tl d a da j k jk k w kw k s ks |
hierarchy_parent_title |
Journal of guidance, control, and dynamics |
hierarchy_parent_id |
130551910 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
Journal of guidance, control, and dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130551910 (DE-600)782987-5 (DE-576)016107497 |
title |
Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
ctrlnum |
(DE-627)OLC1992128146 (DE-599)GBVOLC1992128146 (PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90 (KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol |
title_full |
Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
author_sort |
Schuet, Stefan |
journal |
Journal of guidance, control, and dynamics |
journalStr |
Journal of guidance, control, and dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
847 |
author_browse |
Schuet, Stefan |
container_volume |
40 |
class |
380 DNB |
format_se |
Aufsätze |
author-letter |
Schuet, Stefan |
doi_str_mv |
10.2514/1.G001729 |
dewey-full |
380 |
title_sort |
autonomous flight envelope estimation for loss-of-control prevention |
title_auth |
Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
abstract |
A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 |
abstractGer |
A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 |
abstract_unstemmed |
A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_4046 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Autonomous Flight Envelope Estimation for Loss-of-Control Prevention |
url |
http://dx.doi.org/10.2514/1.G001729 http://search.proquest.com/docview/1891149015 |
remote_bool |
false |
author2 |
Lombaerts, Thomas Acosta, Diana Kaneshige, John Wheeler, Kevin Shish, Kimberlee |
author2Str |
Lombaerts, Thomas Acosta, Diana Kaneshige, John Wheeler, Kevin Shish, Kimberlee |
ppnlink |
130551910 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.2514/1.G001729 |
up_date |
2024-07-04T04:19:14.641Z |
_version_ |
1803620717322829824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992128146</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716184108.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2514/1.G001729</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992128146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992128146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c915-d8f493f8b18b8644685996416f4eed7ca1fa36bfc28cb7123d3a34db3910a4c90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0032738720160000040000400847autonomousflightenvelopeestimationforlossofcontrol</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schuet, Stefan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Autonomous Flight Envelope Estimation for Loss-of-Control Prevention</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A nonlinear aircraft dynamics modeling and system identification approach is formulated and used to derive a rapid, convex optimization-based algorithm for the estimation of aerodynamic force coefficients from noisy sensor data, with uncertainty quantification. Furthermore, with the aerodynamic force coefficients identified, a computationally fast method for generating the corresponding aircraft trim envelope given safe limits on achievable thrust and angle of attack is presented. This unified approach achieves the online Bayesian inference of the aircraft aerodynamic performance capability while running in the background as the aircraft is controlled independently by the pilot or automation system. The resulting information is readily incorporated into the determination of the extended safe maneuvering envelope, pilot displays, and automation algorithms for flight planning, trajectory generation, and guidance: all to help maintain safe aircraft operations under both nominal and off-nominal flight conditions. Presented as Paper 2014-0268 at the AIAA Guidance, Navigation, and Control Conference, National Harbor, MD, 13-17 January 2014</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lombaerts, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Acosta, Diana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneshige, John</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wheeler, Kevin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shish, Kimberlee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of guidance, control, and dynamics</subfield><subfield code="d">New York, NY, 1982</subfield><subfield code="g">40(2016), 4, Seite 847</subfield><subfield code="w">(DE-627)130551910</subfield><subfield code="w">(DE-600)782987-5</subfield><subfield code="w">(DE-576)016107497</subfield><subfield code="x">0731-5090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:847</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.2514/1.G001729</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1891149015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">847</subfield></datafield></record></collection>
|
score |
7.4030848 |