High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers
Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-mat...
Ausführliche Beschreibung
Autor*in: |
Datta, Kunal [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE journal of solid state circuits - New York, NY : IEEE, 1966, 52(2017), 5, Seite 1305-1319 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2017 ; number:5 ; pages:1305-1319 |
Links: |
---|
DOI / URN: |
10.1109/JSSC.2016.2641464 |
---|
Katalog-ID: |
OLC1992323879 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1992323879 | ||
003 | DE-627 | ||
005 | 20210716184745.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JSSC.2016.2641464 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1992323879 | ||
035 | |a (DE-599)GBVOLC1992323879 | ||
035 | |a (PRQ)ieee_primary_0b00006485b568d00 | ||
035 | |a (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
100 | 1 | |a Datta, Kunal |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. | ||
650 | 4 | |a Heterojunction bipolar transistors | |
650 | 4 | |a Class-E | |
650 | 4 | |a transmitter | |
650 | 4 | |a Silicon | |
650 | 4 | |a power amplifier (PA) | |
650 | 4 | |a Gain | |
650 | 4 | |a Silicon germanium | |
650 | 4 | |a Topology | |
650 | 4 | |a millimeter wave (mm-wave) | |
650 | 4 | |a silicon germanium (SiGe) | |
650 | 4 | |a Power generation | |
650 | 4 | |a HBT | |
700 | 1 | |a Hashemi, Hossein |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE journal of solid state circuits |d New York, NY : IEEE, 1966 |g 52(2017), 5, Seite 1305-1319 |w (DE-627)129594865 |w (DE-600)240580-5 |w (DE-576)01508776X |x 0018-9200 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2017 |g number:5 |g pages:1305-1319 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JSSC.2016.2641464 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7815257 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_4313 | ||
951 | |a AR | ||
952 | |d 52 |j 2017 |e 5 |h 1305-1319 |
author_variant |
k d kd |
---|---|
matchkey_str |
article:00189200:2017----::ihradwhgfutprsakdrnitroooiso |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/JSSC.2016.2641464 doi PQ20170501 (DE-627)OLC1992323879 (DE-599)GBVOLC1992323879 (PRQ)ieee_primary_0b00006485b568d00 (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo DE-627 ger DE-627 rakwb eng 620 DE-600 Datta, Kunal verfasserin aut High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT Hashemi, Hossein oth Enthalten in IEEE journal of solid state circuits New York, NY : IEEE, 1966 52(2017), 5, Seite 1305-1319 (DE-627)129594865 (DE-600)240580-5 (DE-576)01508776X 0018-9200 nnns volume:52 year:2017 number:5 pages:1305-1319 http://dx.doi.org/10.1109/JSSC.2016.2641464 Volltext http://ieeexplore.ieee.org/document/7815257 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 52 2017 5 1305-1319 |
spelling |
10.1109/JSSC.2016.2641464 doi PQ20170501 (DE-627)OLC1992323879 (DE-599)GBVOLC1992323879 (PRQ)ieee_primary_0b00006485b568d00 (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo DE-627 ger DE-627 rakwb eng 620 DE-600 Datta, Kunal verfasserin aut High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT Hashemi, Hossein oth Enthalten in IEEE journal of solid state circuits New York, NY : IEEE, 1966 52(2017), 5, Seite 1305-1319 (DE-627)129594865 (DE-600)240580-5 (DE-576)01508776X 0018-9200 nnns volume:52 year:2017 number:5 pages:1305-1319 http://dx.doi.org/10.1109/JSSC.2016.2641464 Volltext http://ieeexplore.ieee.org/document/7815257 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 52 2017 5 1305-1319 |
allfields_unstemmed |
10.1109/JSSC.2016.2641464 doi PQ20170501 (DE-627)OLC1992323879 (DE-599)GBVOLC1992323879 (PRQ)ieee_primary_0b00006485b568d00 (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo DE-627 ger DE-627 rakwb eng 620 DE-600 Datta, Kunal verfasserin aut High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT Hashemi, Hossein oth Enthalten in IEEE journal of solid state circuits New York, NY : IEEE, 1966 52(2017), 5, Seite 1305-1319 (DE-627)129594865 (DE-600)240580-5 (DE-576)01508776X 0018-9200 nnns volume:52 year:2017 number:5 pages:1305-1319 http://dx.doi.org/10.1109/JSSC.2016.2641464 Volltext http://ieeexplore.ieee.org/document/7815257 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 52 2017 5 1305-1319 |
allfieldsGer |
10.1109/JSSC.2016.2641464 doi PQ20170501 (DE-627)OLC1992323879 (DE-599)GBVOLC1992323879 (PRQ)ieee_primary_0b00006485b568d00 (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo DE-627 ger DE-627 rakwb eng 620 DE-600 Datta, Kunal verfasserin aut High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT Hashemi, Hossein oth Enthalten in IEEE journal of solid state circuits New York, NY : IEEE, 1966 52(2017), 5, Seite 1305-1319 (DE-627)129594865 (DE-600)240580-5 (DE-576)01508776X 0018-9200 nnns volume:52 year:2017 number:5 pages:1305-1319 http://dx.doi.org/10.1109/JSSC.2016.2641464 Volltext http://ieeexplore.ieee.org/document/7815257 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 52 2017 5 1305-1319 |
allfieldsSound |
10.1109/JSSC.2016.2641464 doi PQ20170501 (DE-627)OLC1992323879 (DE-599)GBVOLC1992323879 (PRQ)ieee_primary_0b00006485b568d00 (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo DE-627 ger DE-627 rakwb eng 620 DE-600 Datta, Kunal verfasserin aut High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT Hashemi, Hossein oth Enthalten in IEEE journal of solid state circuits New York, NY : IEEE, 1966 52(2017), 5, Seite 1305-1319 (DE-627)129594865 (DE-600)240580-5 (DE-576)01508776X 0018-9200 nnns volume:52 year:2017 number:5 pages:1305-1319 http://dx.doi.org/10.1109/JSSC.2016.2641464 Volltext http://ieeexplore.ieee.org/document/7815257 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 52 2017 5 1305-1319 |
language |
English |
source |
Enthalten in IEEE journal of solid state circuits 52(2017), 5, Seite 1305-1319 volume:52 year:2017 number:5 pages:1305-1319 |
sourceStr |
Enthalten in IEEE journal of solid state circuits 52(2017), 5, Seite 1305-1319 volume:52 year:2017 number:5 pages:1305-1319 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE journal of solid state circuits |
authorswithroles_txt_mv |
Datta, Kunal @@aut@@ Hashemi, Hossein @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129594865 |
dewey-sort |
3620 |
id |
OLC1992323879 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992323879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716184745.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSSC.2016.2641464</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992323879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992323879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)ieee_primary_0b00006485b568d00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Datta, Kunal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterojunction bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class-E</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmitter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power amplifier (PA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon germanium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">millimeter wave (mm-wave)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon germanium (SiGe)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HBT</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashemi, Hossein</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE journal of solid state circuits</subfield><subfield code="d">New York, NY : IEEE, 1966</subfield><subfield code="g">52(2017), 5, Seite 1305-1319</subfield><subfield code="w">(DE-627)129594865</subfield><subfield code="w">(DE-600)240580-5</subfield><subfield code="w">(DE-576)01508776X</subfield><subfield code="x">0018-9200</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1305-1319</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JSSC.2016.2641464</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7815257</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">1305-1319</subfield></datafield></record></collection>
|
author |
Datta, Kunal |
spellingShingle |
Datta, Kunal ddc 620 misc Heterojunction bipolar transistors misc Class-E misc transmitter misc Silicon misc power amplifier (PA) misc Gain misc Silicon germanium misc Topology misc millimeter wave (mm-wave) misc silicon germanium (SiGe) misc Power generation misc HBT High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers |
authorStr |
Datta, Kunal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129594865 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9200 |
topic_title |
620 DE-600 High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers Heterojunction bipolar transistors Class-E transmitter Silicon power amplifier (PA) Gain Silicon germanium Topology millimeter wave (mm-wave) silicon germanium (SiGe) Power generation HBT |
topic |
ddc 620 misc Heterojunction bipolar transistors misc Class-E misc transmitter misc Silicon misc power amplifier (PA) misc Gain misc Silicon germanium misc Topology misc millimeter wave (mm-wave) misc silicon germanium (SiGe) misc Power generation misc HBT |
topic_unstemmed |
ddc 620 misc Heterojunction bipolar transistors misc Class-E misc transmitter misc Silicon misc power amplifier (PA) misc Gain misc Silicon germanium misc Topology misc millimeter wave (mm-wave) misc silicon germanium (SiGe) misc Power generation misc HBT |
topic_browse |
ddc 620 misc Heterojunction bipolar transistors misc Class-E misc transmitter misc Silicon misc power amplifier (PA) misc Gain misc Silicon germanium misc Topology misc millimeter wave (mm-wave) misc silicon germanium (SiGe) misc Power generation misc HBT |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h h hh |
hierarchy_parent_title |
IEEE journal of solid state circuits |
hierarchy_parent_id |
129594865 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE journal of solid state circuits |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129594865 (DE-600)240580-5 (DE-576)01508776X |
title |
High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers |
ctrlnum |
(DE-627)OLC1992323879 (DE-599)GBVOLC1992323879 (PRQ)ieee_primary_0b00006485b568d00 (KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo |
title_full |
High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers |
author_sort |
Datta, Kunal |
journal |
IEEE journal of solid state circuits |
journalStr |
IEEE journal of solid state circuits |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1305 |
author_browse |
Datta, Kunal |
container_volume |
52 |
class |
620 DE-600 |
format_se |
Aufsätze |
author-letter |
Datta, Kunal |
doi_str_mv |
10.1109/JSSC.2016.2641464 |
dewey-full |
620 |
title_sort |
high-breakdown, high- f} multiport stacked-transistor topologies for the -band power amplifiers |
title_auth |
High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers |
abstract |
Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. |
abstractGer |
Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. |
abstract_unstemmed |
Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 |
container_issue |
5 |
title_short |
High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers |
url |
http://dx.doi.org/10.1109/JSSC.2016.2641464 http://ieeexplore.ieee.org/document/7815257 |
remote_bool |
false |
author2 |
Hashemi, Hossein |
author2Str |
Hashemi, Hossein |
ppnlink |
129594865 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/JSSC.2016.2641464 |
up_date |
2024-07-04T04:43:43.048Z |
_version_ |
1803622257051828224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992323879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716184745.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSSC.2016.2641464</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992323879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992323879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)ieee_primary_0b00006485b568d00</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0050684220170000052000501305highbreakdownhighfmultiportstackedtransistortopolo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Datta, Kunal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Breakdown, High- f} Multiport Stacked-Transistor Topologies for the -Band Power Amplifiers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Effect of silicon technology limitations, including transistor nonidealities, layout parasitics, and low-quality factor on-chip passive components on millimeter wave stacked switching power amplifiers operating at the <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band frequencies (75-110 GHz), is presented in this paper. To mitigate the performance degradation in output power and PAE arising from such causes, high-breakdown voltage, high-<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> multiport stacked-transistor topologies are proposed for realizing power amplifiers with high output power and high efficiency at 75-110 GHz. A 90-nm silicon germanium (SiGe) BiCMOS process is used to propose active structures comprising of two and three stacked transistors with integrated layout parasitics that achieve <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ max}} </tex-math></inline-formula> and breakdown voltage of 295 GHz and 8 V and 260 GHz and 11 V, respectively. Functionality of such multiport transistor topologies is demonstrated in proof-of-concept implementations, including a five-stage two-stacked switching power amplifier (PA) that achieves peak output power and PAE of 22 dBm and 19% at 85 GHz, and a six-stage three-stacked PA that achieves peak output power and PAE of 23.3 dBm and 17% at 83 GHz, respectively. For comparison with conventional switching PA designs using native transistor footprints, a five-stage <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band nonstacked Class-E amplifiers is also fabricated in the same 90-nm SiGe BiCMOS process with output power and PAE of 19.5 dBm and 16% at 88 GHz. The superior performance of output power and PAE in designs using the multiport transistor topologies highlights the benefit of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterojunction bipolar transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class-E</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmitter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power amplifier (PA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon germanium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">millimeter wave (mm-wave)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon germanium (SiGe)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HBT</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashemi, Hossein</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE journal of solid state circuits</subfield><subfield code="d">New York, NY : IEEE, 1966</subfield><subfield code="g">52(2017), 5, Seite 1305-1319</subfield><subfield code="w">(DE-627)129594865</subfield><subfield code="w">(DE-600)240580-5</subfield><subfield code="w">(DE-576)01508776X</subfield><subfield code="x">0018-9200</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1305-1319</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JSSC.2016.2641464</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7815257</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">1305-1319</subfield></datafield></record></collection>
|
score |
7.4013233 |