A comparison of three predictor selection methods for statistical downscaling
Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling mod...
Ausführliche Beschreibung
Autor*in: |
Yang, Chunli [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Royal Meteorological Society |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: International journal of climatology - Chichester [u.a.] : Wiley, 1989, 37(2017), 3, Seite 1238-1249 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2017 ; number:3 ; pages:1238-1249 |
Links: |
---|
DOI / URN: |
10.1002/joc.4772 |
---|
Katalog-ID: |
OLC1992739986 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1992739986 | ||
003 | DE-627 | ||
005 | 20230715043104.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/joc.4772 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1992739986 | ||
035 | |a (DE-599)GBVOLC1992739986 | ||
035 | |a (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 | ||
035 | |a (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a RA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Yang, Chunli |e verfasserin |4 aut | |
245 | 1 | 2 | |a A comparison of three predictor selection methods for statistical downscaling |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. | ||
540 | |a Nutzungsrecht: © 2016 Royal Meteorological Society | ||
650 | 4 | |a uncertainty assessment | |
650 | 4 | |a SDSM | |
650 | 4 | |a predictor selection methods | |
650 | 4 | |a Correlation analysis | |
700 | 1 | |a Wang, Ninglian |4 oth | |
700 | 1 | |a Wang, Shijin |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of climatology |d Chichester [u.a.] : Wiley, 1989 |g 37(2017), 3, Seite 1238-1249 |w (DE-627)130763128 |w (DE-600)1000947-4 |w (DE-576)023035773 |x 0899-8418 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2017 |g number:3 |g pages:1238-1249 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/joc.4772 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1873484631 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_4311 | ||
936 | r | v | |a RA 1000 |
951 | |a AR | ||
952 | |d 37 |j 2017 |e 3 |h 1238-1249 |
author_variant |
c y cy |
---|---|
matchkey_str |
article:08998418:2017----::cmaiootrerdcoslcinehdfrtt |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/joc.4772 doi PQ20170501 (DE-627)OLC1992739986 (DE-599)GBVOLC1992739986 (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati DE-627 ger DE-627 rakwb eng 550 DNB RA 1000 AVZ rvk Yang, Chunli verfasserin aut A comparison of three predictor selection methods for statistical downscaling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. Nutzungsrecht: © 2016 Royal Meteorological Society uncertainty assessment SDSM predictor selection methods Correlation analysis Wang, Ninglian oth Wang, Shijin oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 3, Seite 1238-1249 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:3 pages:1238-1249 http://dx.doi.org/10.1002/joc.4772 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract http://search.proquest.com/docview/1873484631 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 3 1238-1249 |
spelling |
10.1002/joc.4772 doi PQ20170501 (DE-627)OLC1992739986 (DE-599)GBVOLC1992739986 (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati DE-627 ger DE-627 rakwb eng 550 DNB RA 1000 AVZ rvk Yang, Chunli verfasserin aut A comparison of three predictor selection methods for statistical downscaling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. Nutzungsrecht: © 2016 Royal Meteorological Society uncertainty assessment SDSM predictor selection methods Correlation analysis Wang, Ninglian oth Wang, Shijin oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 3, Seite 1238-1249 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:3 pages:1238-1249 http://dx.doi.org/10.1002/joc.4772 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract http://search.proquest.com/docview/1873484631 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 3 1238-1249 |
allfields_unstemmed |
10.1002/joc.4772 doi PQ20170501 (DE-627)OLC1992739986 (DE-599)GBVOLC1992739986 (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati DE-627 ger DE-627 rakwb eng 550 DNB RA 1000 AVZ rvk Yang, Chunli verfasserin aut A comparison of three predictor selection methods for statistical downscaling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. Nutzungsrecht: © 2016 Royal Meteorological Society uncertainty assessment SDSM predictor selection methods Correlation analysis Wang, Ninglian oth Wang, Shijin oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 3, Seite 1238-1249 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:3 pages:1238-1249 http://dx.doi.org/10.1002/joc.4772 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract http://search.proquest.com/docview/1873484631 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 3 1238-1249 |
allfieldsGer |
10.1002/joc.4772 doi PQ20170501 (DE-627)OLC1992739986 (DE-599)GBVOLC1992739986 (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati DE-627 ger DE-627 rakwb eng 550 DNB RA 1000 AVZ rvk Yang, Chunli verfasserin aut A comparison of three predictor selection methods for statistical downscaling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. Nutzungsrecht: © 2016 Royal Meteorological Society uncertainty assessment SDSM predictor selection methods Correlation analysis Wang, Ninglian oth Wang, Shijin oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 3, Seite 1238-1249 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:3 pages:1238-1249 http://dx.doi.org/10.1002/joc.4772 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract http://search.proquest.com/docview/1873484631 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 3 1238-1249 |
allfieldsSound |
10.1002/joc.4772 doi PQ20170501 (DE-627)OLC1992739986 (DE-599)GBVOLC1992739986 (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati DE-627 ger DE-627 rakwb eng 550 DNB RA 1000 AVZ rvk Yang, Chunli verfasserin aut A comparison of three predictor selection methods for statistical downscaling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. Nutzungsrecht: © 2016 Royal Meteorological Society uncertainty assessment SDSM predictor selection methods Correlation analysis Wang, Ninglian oth Wang, Shijin oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 3, Seite 1238-1249 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:3 pages:1238-1249 http://dx.doi.org/10.1002/joc.4772 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract http://search.proquest.com/docview/1873484631 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 3 1238-1249 |
language |
English |
source |
Enthalten in International journal of climatology 37(2017), 3, Seite 1238-1249 volume:37 year:2017 number:3 pages:1238-1249 |
sourceStr |
Enthalten in International journal of climatology 37(2017), 3, Seite 1238-1249 volume:37 year:2017 number:3 pages:1238-1249 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
uncertainty assessment SDSM predictor selection methods Correlation analysis |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
International journal of climatology |
authorswithroles_txt_mv |
Yang, Chunli @@aut@@ Wang, Ninglian @@oth@@ Wang, Shijin @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130763128 |
dewey-sort |
3550 |
id |
OLC1992739986 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992739986</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715043104.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/joc.4772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992739986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992739986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Chunli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A comparison of three predictor selection methods for statistical downscaling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SDSM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predictor selection methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ninglian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shijin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of climatology</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1989</subfield><subfield code="g">37(2017), 3, Seite 1238-1249</subfield><subfield code="w">(DE-627)130763128</subfield><subfield code="w">(DE-600)1000947-4</subfield><subfield code="w">(DE-576)023035773</subfield><subfield code="x">0899-8418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1238-1249</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/joc.4772</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1873484631</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">1238-1249</subfield></datafield></record></collection>
|
author |
Yang, Chunli |
spellingShingle |
Yang, Chunli ddc 550 rvk RA 1000 misc uncertainty assessment misc SDSM misc predictor selection methods misc Correlation analysis A comparison of three predictor selection methods for statistical downscaling |
authorStr |
Yang, Chunli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130763128 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0899-8418 |
topic_title |
550 DNB RA 1000 AVZ rvk A comparison of three predictor selection methods for statistical downscaling uncertainty assessment SDSM predictor selection methods Correlation analysis |
topic |
ddc 550 rvk RA 1000 misc uncertainty assessment misc SDSM misc predictor selection methods misc Correlation analysis |
topic_unstemmed |
ddc 550 rvk RA 1000 misc uncertainty assessment misc SDSM misc predictor selection methods misc Correlation analysis |
topic_browse |
ddc 550 rvk RA 1000 misc uncertainty assessment misc SDSM misc predictor selection methods misc Correlation analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
n w nw s w sw |
hierarchy_parent_title |
International journal of climatology |
hierarchy_parent_id |
130763128 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
International journal of climatology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 |
title |
A comparison of three predictor selection methods for statistical downscaling |
ctrlnum |
(DE-627)OLC1992739986 (DE-599)GBVOLC1992739986 (PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3 (KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati |
title_full |
A comparison of three predictor selection methods for statistical downscaling |
author_sort |
Yang, Chunli |
journal |
International journal of climatology |
journalStr |
International journal of climatology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1238 |
author_browse |
Yang, Chunli |
container_volume |
37 |
class |
550 DNB RA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Yang, Chunli |
doi_str_mv |
10.1002/joc.4772 |
dewey-full |
550 |
title_sort |
comparison of three predictor selection methods for statistical downscaling |
title_auth |
A comparison of three predictor selection methods for statistical downscaling |
abstract |
Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. |
abstractGer |
Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. |
abstract_unstemmed |
Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 |
container_issue |
3 |
title_short |
A comparison of three predictor selection methods for statistical downscaling |
url |
http://dx.doi.org/10.1002/joc.4772 http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract http://search.proquest.com/docview/1873484631 |
remote_bool |
false |
author2 |
Wang, Ninglian Wang, Shijin |
author2Str |
Wang, Ninglian Wang, Shijin |
ppnlink |
130763128 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/joc.4772 |
up_date |
2024-07-04T05:34:23.237Z |
_version_ |
1803625444921049088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1992739986</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715043104.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/joc.4772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1992739986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1992739986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1842-2a311a9e67a0db3c00e7f4592f0983b367dff0af46a228b339aced30d3d8824b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104704320170000037000301238comparisonofthreepredictorselectionmethodsforstati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Chunli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A comparison of three predictor selection methods for statistical downscaling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three predictor selection methods [correlation analysis, partial correlation analysis and stepwise regression analysis (SRA)] that are commonly used for statistical downscaling are compared in terms of the uncertainty assessments of their downscaled results using the same statistical downscaling model (SDSM). Uncertainty is assessed by comparing several statistical indices for observed and downscaled daily precipitation, daily maximum and minimum temperature, monthly means and variances of daily precipitation and daily temperature. Besides these, the distributions of monthly mean of daily precipitation, monthly dry and wet days also are considered. The analysis employs the SDSM and 54 years (1961–2014) of observed daily precipitation and temperature together with National Center for Environmental Prediction ( NCEP ) reanalysis predictors. A comparison of the different methods for selecting predictors indicates that SRA is slight better than other two methods in most statistical indices.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SDSM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">predictor selection methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ninglian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shijin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of climatology</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1989</subfield><subfield code="g">37(2017), 3, Seite 1238-1249</subfield><subfield code="w">(DE-627)130763128</subfield><subfield code="w">(DE-600)1000947-4</subfield><subfield code="w">(DE-576)023035773</subfield><subfield code="x">0899-8418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1238-1249</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/joc.4772</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/joc.4772/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1873484631</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">1238-1249</subfield></datafield></record></collection>
|
score |
7.402128 |