A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents
Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not effici...
Ausführliche Beschreibung
Autor*in: |
Hu, Yizhong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power systems - New York, NY : IEEE, 1986, 32(2017), 3, Seite 2455-2463 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2017 ; number:3 ; pages:2455-2463 |
Links: |
---|
DOI / URN: |
10.1109/TPWRS.2016.2611603 |
---|
Katalog-ID: |
OLC1993091149 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1993091149 | ||
003 | DE-627 | ||
005 | 20220220120709.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPWRS.2016.2611603 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1993091149 | ||
035 | |a (DE-599)GBVOLC1993091149 | ||
035 | |a (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 | ||
035 | |a (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 53.00 |2 bkl | ||
084 | |a 53.30 |2 bkl | ||
100 | 1 | |a Hu, Yizhong |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. | ||
650 | 4 | |a frequency-dependent network equivalent | |
650 | 4 | |a Numerical models | |
650 | 4 | |a Frequency response | |
650 | 4 | |a Fitting | |
650 | 4 | |a Resonant frequency | |
650 | 4 | |a Electromagnetic transient | |
650 | 4 | |a Mathematical model | |
650 | 4 | |a semidefinite programming | |
650 | 4 | |a Frequency dependence | |
650 | 4 | |a passivity enforcement | |
650 | 4 | |a Computational modeling | |
700 | 1 | |a Wu, Wenchuan |4 oth | |
700 | 1 | |a Gole, Aniruddha M |4 oth | |
700 | 1 | |a Zhang, Boming |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power systems |d New York, NY : IEEE, 1986 |g 32(2017), 3, Seite 2455-2463 |w (DE-627)129582344 |w (DE-600)232866-5 |w (DE-576)015075893 |x 0885-8950 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2017 |g number:3 |g pages:2455-2463 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPWRS.2016.2611603 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7572216 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
936 | b | k | |a 53.00 |q AVZ |
936 | b | k | |a 53.30 |q AVZ |
951 | |a AR | ||
952 | |d 32 |j 2017 |e 3 |h 2455-2463 |
author_variant |
y h yh |
---|---|
matchkey_str |
article:08858950:2017----::gaateadfiinmtotefreasvtofeunyee |
hierarchy_sort_str |
2017 |
bklnumber |
53.00 53.30 |
publishDate |
2017 |
allfields |
10.1109/TPWRS.2016.2611603 doi PQ20170501 (DE-627)OLC1993091149 (DE-599)GBVOLC1993091149 (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Hu, Yizhong verfasserin aut A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling Wu, Wenchuan oth Gole, Aniruddha M oth Zhang, Boming oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 3, Seite 2455-2463 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:3 pages:2455-2463 http://dx.doi.org/10.1109/TPWRS.2016.2611603 Volltext http://ieeexplore.ieee.org/document/7572216 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 3 2455-2463 |
spelling |
10.1109/TPWRS.2016.2611603 doi PQ20170501 (DE-627)OLC1993091149 (DE-599)GBVOLC1993091149 (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Hu, Yizhong verfasserin aut A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling Wu, Wenchuan oth Gole, Aniruddha M oth Zhang, Boming oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 3, Seite 2455-2463 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:3 pages:2455-2463 http://dx.doi.org/10.1109/TPWRS.2016.2611603 Volltext http://ieeexplore.ieee.org/document/7572216 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 3 2455-2463 |
allfields_unstemmed |
10.1109/TPWRS.2016.2611603 doi PQ20170501 (DE-627)OLC1993091149 (DE-599)GBVOLC1993091149 (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Hu, Yizhong verfasserin aut A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling Wu, Wenchuan oth Gole, Aniruddha M oth Zhang, Boming oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 3, Seite 2455-2463 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:3 pages:2455-2463 http://dx.doi.org/10.1109/TPWRS.2016.2611603 Volltext http://ieeexplore.ieee.org/document/7572216 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 3 2455-2463 |
allfieldsGer |
10.1109/TPWRS.2016.2611603 doi PQ20170501 (DE-627)OLC1993091149 (DE-599)GBVOLC1993091149 (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Hu, Yizhong verfasserin aut A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling Wu, Wenchuan oth Gole, Aniruddha M oth Zhang, Boming oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 3, Seite 2455-2463 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:3 pages:2455-2463 http://dx.doi.org/10.1109/TPWRS.2016.2611603 Volltext http://ieeexplore.ieee.org/document/7572216 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 3 2455-2463 |
allfieldsSound |
10.1109/TPWRS.2016.2611603 doi PQ20170501 (DE-627)OLC1993091149 (DE-599)GBVOLC1993091149 (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr DE-627 ger DE-627 rakwb eng 620 DNB 53.00 bkl 53.30 bkl Hu, Yizhong verfasserin aut A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling Wu, Wenchuan oth Gole, Aniruddha M oth Zhang, Boming oth Enthalten in IEEE transactions on power systems New York, NY : IEEE, 1986 32(2017), 3, Seite 2455-2463 (DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 0885-8950 nnns volume:32 year:2017 number:3 pages:2455-2463 http://dx.doi.org/10.1109/TPWRS.2016.2611603 Volltext http://ieeexplore.ieee.org/document/7572216 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 53.00 AVZ 53.30 AVZ AR 32 2017 3 2455-2463 |
language |
English |
source |
Enthalten in IEEE transactions on power systems 32(2017), 3, Seite 2455-2463 volume:32 year:2017 number:3 pages:2455-2463 |
sourceStr |
Enthalten in IEEE transactions on power systems 32(2017), 3, Seite 2455-2463 volume:32 year:2017 number:3 pages:2455-2463 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power systems |
authorswithroles_txt_mv |
Hu, Yizhong @@aut@@ Wu, Wenchuan @@oth@@ Gole, Aniruddha M @@oth@@ Zhang, Boming @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129582344 |
dewey-sort |
3620 |
id |
OLC1993091149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993091149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220120709.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRS.2016.2611603</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993091149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993091149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Yizhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency-dependent network equivalent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic transient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semidefinite programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency dependence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passivity enforcement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wenchuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gole, Aniruddha M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Boming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power systems</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">32(2017), 3, Seite 2455-2463</subfield><subfield code="w">(DE-627)129582344</subfield><subfield code="w">(DE-600)232866-5</subfield><subfield code="w">(DE-576)015075893</subfield><subfield code="x">0885-8950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:2455-2463</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRS.2016.2611603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7572216</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">2455-2463</subfield></datafield></record></collection>
|
author |
Hu, Yizhong |
spellingShingle |
Hu, Yizhong ddc 620 bkl 53.00 bkl 53.30 misc frequency-dependent network equivalent misc Numerical models misc Frequency response misc Fitting misc Resonant frequency misc Electromagnetic transient misc Mathematical model misc semidefinite programming misc Frequency dependence misc passivity enforcement misc Computational modeling A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents |
authorStr |
Hu, Yizhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129582344 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8950 |
topic_title |
620 DNB 53.00 bkl 53.30 bkl A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents frequency-dependent network equivalent Numerical models Frequency response Fitting Resonant frequency Electromagnetic transient Mathematical model semidefinite programming Frequency dependence passivity enforcement Computational modeling |
topic |
ddc 620 bkl 53.00 bkl 53.30 misc frequency-dependent network equivalent misc Numerical models misc Frequency response misc Fitting misc Resonant frequency misc Electromagnetic transient misc Mathematical model misc semidefinite programming misc Frequency dependence misc passivity enforcement misc Computational modeling |
topic_unstemmed |
ddc 620 bkl 53.00 bkl 53.30 misc frequency-dependent network equivalent misc Numerical models misc Frequency response misc Fitting misc Resonant frequency misc Electromagnetic transient misc Mathematical model misc semidefinite programming misc Frequency dependence misc passivity enforcement misc Computational modeling |
topic_browse |
ddc 620 bkl 53.00 bkl 53.30 misc frequency-dependent network equivalent misc Numerical models misc Frequency response misc Fitting misc Resonant frequency misc Electromagnetic transient misc Mathematical model misc semidefinite programming misc Frequency dependence misc passivity enforcement misc Computational modeling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w w ww a m g am amg b z bz |
hierarchy_parent_title |
IEEE transactions on power systems |
hierarchy_parent_id |
129582344 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129582344 (DE-600)232866-5 (DE-576)015075893 |
title |
A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents |
ctrlnum |
(DE-627)OLC1993091149 (DE-599)GBVOLC1993091149 (PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0 (KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr |
title_full |
A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents |
author_sort |
Hu, Yizhong |
journal |
IEEE transactions on power systems |
journalStr |
IEEE transactions on power systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2455 |
author_browse |
Hu, Yizhong |
container_volume |
32 |
class |
620 DNB 53.00 bkl 53.30 bkl |
format_se |
Aufsätze |
author-letter |
Hu, Yizhong |
doi_str_mv |
10.1109/TPWRS.2016.2611603 |
dewey-full |
620 |
title_sort |
guaranteed and efficient method to enforce passivity of frequency-dependent network equivalents |
title_auth |
A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents |
abstract |
Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. |
abstractGer |
Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. |
abstract_unstemmed |
Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_105 GBV_ILN_2014 GBV_ILN_2016 |
container_issue |
3 |
title_short |
A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents |
url |
http://dx.doi.org/10.1109/TPWRS.2016.2611603 http://ieeexplore.ieee.org/document/7572216 |
remote_bool |
false |
author2 |
Wu, Wenchuan Gole, Aniruddha M Zhang, Boming |
author2Str |
Wu, Wenchuan Gole, Aniruddha M Zhang, Boming |
ppnlink |
129582344 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TPWRS.2016.2611603 |
up_date |
2024-07-03T13:26:06.115Z |
_version_ |
1803564525674299392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993091149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220120709.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRS.2016.2611603</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993091149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993091149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1011-6d54be4e5fa80aecb7bb7a04afd62f77c87a112d16a3a0bd3461bec685c74a8e0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163645620170000032000302455guaranteedandefficientmethodtoenforcepassivityoffr</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Yizhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Guaranteed and Efficient Method to Enforce Passivity of Frequency-Dependent Network Equivalents</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rational models of frequency-dependent network equivalents (FDNEs) must be passive to ensure numerical stability in time domain simulations. Therefore, passivity enforcement is an essential step in FDNE rational modeling procedures; however, current approaches are either not guaranteed or not efficient. Here, a positive real lemma based semidefinite programming model is first implemented to guarantee the passivity of the result obtained. Second, this paper incorporates an approach to significantly improve efficiency while guaranteeing passivity by exploiting an important feature of rational models: that constituent complex-pole terms corresponding to dominant resonance peaks can be adjusted to be passive through minor changes, and a partition-based scheme is proposed. Numerical investigations demonstrate that the proposed method is efficient while introducing little additional modeling error.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency-dependent network equivalent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic transient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semidefinite programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency dependence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passivity enforcement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Wenchuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gole, Aniruddha M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Boming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power systems</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">32(2017), 3, Seite 2455-2463</subfield><subfield code="w">(DE-627)129582344</subfield><subfield code="w">(DE-600)232866-5</subfield><subfield code="w">(DE-576)015075893</subfield><subfield code="x">0885-8950</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:2455-2463</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRS.2016.2611603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7572216</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">2455-2463</subfield></datafield></record></collection>
|
score |
7.399935 |