Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography
Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The...
Ausführliche Beschreibung
Autor*in: |
Ronny Shalev [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: AI magazine - Menlo Park, Calif. : AAAI, 1980, 38(2017), 1, Seite 61 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2017 ; number:1 ; pages:61 |
Links: |
---|
Katalog-ID: |
OLC1993122400 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1993122400 | ||
003 | DE-627 | ||
005 | 20230517113423.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1993122400 | ||
035 | |a (DE-599)GBVOLC1993122400 | ||
035 | |a (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 | ||
035 | |a (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DNB |
084 | |a 54.72 |2 bkl | ||
100 | 0 | |a Ronny Shalev |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. | ||
650 | 4 | |a Coronary vessels | |
650 | 4 | |a Classification | |
650 | 4 | |a Blood clots | |
650 | 4 | |a Heart attacks | |
650 | 4 | |a Researchers | |
650 | 4 | |a Medical imaging | |
650 | 4 | |a Automation | |
650 | 4 | |a Visualization | |
650 | 4 | |a Stents | |
650 | 4 | |a Cardiovascular disease | |
700 | 0 | |a Daisuke Nakamura |4 oth | |
700 | 0 | |a Setsu Nishino |4 oth | |
700 | 0 | |a Andrew M Rollins |4 oth | |
700 | 0 | |a Hiram G Bezerra |4 oth | |
700 | 0 | |a David L Wilson |4 oth | |
700 | 0 | |a Soumya Ray |4 oth | |
773 | 0 | 8 | |i Enthalten in |t AI magazine |d Menlo Park, Calif. : AAAI, 1980 |g 38(2017), 1, Seite 61 |w (DE-627)129136298 |w (DE-600)46965-8 |w (DE-576)014452987 |x 0738-4602 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2017 |g number:1 |g pages:61 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1888749268 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4315 | ||
936 | b | k | |a 54.72 |q AVZ |
951 | |a AR | ||
952 | |d 38 |j 2017 |e 1 |h 61 |
author_variant |
r s rs |
---|---|
matchkey_str |
article:07384602:2017----::uoaevlmtiitaaclrlqelsiiainsnot |
hierarchy_sort_str |
2017 |
bklnumber |
54.72 |
publishDate |
2017 |
allfields |
PQ20170501 (DE-627)OLC1993122400 (DE-599)GBVOLC1993122400 (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati DE-627 ger DE-627 rakwb eng 004 DNB 54.72 bkl Ronny Shalev verfasserin aut Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease Daisuke Nakamura oth Setsu Nishino oth Andrew M Rollins oth Hiram G Bezerra oth David L Wilson oth Soumya Ray oth Enthalten in AI magazine Menlo Park, Calif. : AAAI, 1980 38(2017), 1, Seite 61 (DE-627)129136298 (DE-600)46965-8 (DE-576)014452987 0738-4602 nnns volume:38 year:2017 number:1 pages:61 http://search.proquest.com/docview/1888749268 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2037 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4315 54.72 AVZ AR 38 2017 1 61 |
spelling |
PQ20170501 (DE-627)OLC1993122400 (DE-599)GBVOLC1993122400 (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati DE-627 ger DE-627 rakwb eng 004 DNB 54.72 bkl Ronny Shalev verfasserin aut Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease Daisuke Nakamura oth Setsu Nishino oth Andrew M Rollins oth Hiram G Bezerra oth David L Wilson oth Soumya Ray oth Enthalten in AI magazine Menlo Park, Calif. : AAAI, 1980 38(2017), 1, Seite 61 (DE-627)129136298 (DE-600)46965-8 (DE-576)014452987 0738-4602 nnns volume:38 year:2017 number:1 pages:61 http://search.proquest.com/docview/1888749268 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2037 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4315 54.72 AVZ AR 38 2017 1 61 |
allfields_unstemmed |
PQ20170501 (DE-627)OLC1993122400 (DE-599)GBVOLC1993122400 (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati DE-627 ger DE-627 rakwb eng 004 DNB 54.72 bkl Ronny Shalev verfasserin aut Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease Daisuke Nakamura oth Setsu Nishino oth Andrew M Rollins oth Hiram G Bezerra oth David L Wilson oth Soumya Ray oth Enthalten in AI magazine Menlo Park, Calif. : AAAI, 1980 38(2017), 1, Seite 61 (DE-627)129136298 (DE-600)46965-8 (DE-576)014452987 0738-4602 nnns volume:38 year:2017 number:1 pages:61 http://search.proquest.com/docview/1888749268 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2037 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4315 54.72 AVZ AR 38 2017 1 61 |
allfieldsGer |
PQ20170501 (DE-627)OLC1993122400 (DE-599)GBVOLC1993122400 (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati DE-627 ger DE-627 rakwb eng 004 DNB 54.72 bkl Ronny Shalev verfasserin aut Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease Daisuke Nakamura oth Setsu Nishino oth Andrew M Rollins oth Hiram G Bezerra oth David L Wilson oth Soumya Ray oth Enthalten in AI magazine Menlo Park, Calif. : AAAI, 1980 38(2017), 1, Seite 61 (DE-627)129136298 (DE-600)46965-8 (DE-576)014452987 0738-4602 nnns volume:38 year:2017 number:1 pages:61 http://search.proquest.com/docview/1888749268 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2037 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4315 54.72 AVZ AR 38 2017 1 61 |
allfieldsSound |
PQ20170501 (DE-627)OLC1993122400 (DE-599)GBVOLC1993122400 (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati DE-627 ger DE-627 rakwb eng 004 DNB 54.72 bkl Ronny Shalev verfasserin aut Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease Daisuke Nakamura oth Setsu Nishino oth Andrew M Rollins oth Hiram G Bezerra oth David L Wilson oth Soumya Ray oth Enthalten in AI magazine Menlo Park, Calif. : AAAI, 1980 38(2017), 1, Seite 61 (DE-627)129136298 (DE-600)46965-8 (DE-576)014452987 0738-4602 nnns volume:38 year:2017 number:1 pages:61 http://search.proquest.com/docview/1888749268 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2037 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4315 54.72 AVZ AR 38 2017 1 61 |
language |
English |
source |
Enthalten in AI magazine 38(2017), 1, Seite 61 volume:38 year:2017 number:1 pages:61 |
sourceStr |
Enthalten in AI magazine 38(2017), 1, Seite 61 volume:38 year:2017 number:1 pages:61 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
AI magazine |
authorswithroles_txt_mv |
Ronny Shalev @@aut@@ Daisuke Nakamura @@oth@@ Setsu Nishino @@oth@@ Andrew M Rollins @@oth@@ Hiram G Bezerra @@oth@@ David L Wilson @@oth@@ Soumya Ray @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129136298 |
dewey-sort |
14 |
id |
OLC1993122400 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993122400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517113423.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993122400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993122400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ronny Shalev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary vessels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood clots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heart attacks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardiovascular disease</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daisuke Nakamura</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Setsu Nishino</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew M Rollins</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiram G Bezerra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David L Wilson</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soumya Ray</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">AI magazine</subfield><subfield code="d">Menlo Park, Calif. : AAAI, 1980</subfield><subfield code="g">38(2017), 1, Seite 61</subfield><subfield code="w">(DE-627)129136298</subfield><subfield code="w">(DE-600)46965-8</subfield><subfield code="w">(DE-576)014452987</subfield><subfield code="x">0738-4602</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:61</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1888749268</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">61</subfield></datafield></record></collection>
|
author |
Ronny Shalev |
spellingShingle |
Ronny Shalev ddc 004 bkl 54.72 misc Coronary vessels misc Classification misc Blood clots misc Heart attacks misc Researchers misc Medical imaging misc Automation misc Visualization misc Stents misc Cardiovascular disease Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography |
authorStr |
Ronny Shalev |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129136298 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0738-4602 |
topic_title |
004 DNB 54.72 bkl Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography Coronary vessels Classification Blood clots Heart attacks Researchers Medical imaging Automation Visualization Stents Cardiovascular disease |
topic |
ddc 004 bkl 54.72 misc Coronary vessels misc Classification misc Blood clots misc Heart attacks misc Researchers misc Medical imaging misc Automation misc Visualization misc Stents misc Cardiovascular disease |
topic_unstemmed |
ddc 004 bkl 54.72 misc Coronary vessels misc Classification misc Blood clots misc Heart attacks misc Researchers misc Medical imaging misc Automation misc Visualization misc Stents misc Cardiovascular disease |
topic_browse |
ddc 004 bkl 54.72 misc Coronary vessels misc Classification misc Blood clots misc Heart attacks misc Researchers misc Medical imaging misc Automation misc Visualization misc Stents misc Cardiovascular disease |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d n dn s n sn a m r amr h g b hgb d l w dlw s r sr |
hierarchy_parent_title |
AI magazine |
hierarchy_parent_id |
129136298 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
AI magazine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129136298 (DE-600)46965-8 (DE-576)014452987 |
title |
Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography |
ctrlnum |
(DE-627)OLC1993122400 (DE-599)GBVOLC1993122400 (PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080 (KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati |
title_full |
Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography |
author_sort |
Ronny Shalev |
journal |
AI magazine |
journalStr |
AI magazine |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
61 |
author_browse |
Ronny Shalev |
container_volume |
38 |
class |
004 DNB 54.72 bkl |
format_se |
Aufsätze |
author-letter |
Ronny Shalev |
dewey-full |
004 |
title_sort |
automated volumetric intravascular plaque classification using optical coherence tomography |
title_auth |
Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography |
abstract |
Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. |
abstractGer |
Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. |
abstract_unstemmed |
Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2037 GBV_ILN_4046 GBV_ILN_4116 GBV_ILN_4315 |
container_issue |
1 |
title_short |
Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography |
url |
http://search.proquest.com/docview/1888749268 |
remote_bool |
false |
author2 |
Daisuke Nakamura Setsu Nishino Andrew M Rollins Hiram G Bezerra David L Wilson Soumya Ray |
author2Str |
Daisuke Nakamura Setsu Nishino Andrew M Rollins Hiram G Bezerra David L Wilson Soumya Ray |
ppnlink |
129136298 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
up_date |
2024-07-03T13:32:16.396Z |
_version_ |
1803564913938923520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993122400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517113423.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993122400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993122400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1217-382909913f3e60b5e22a3fee5a3b13ed4be5233f81a393fadaf892e86a787080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0170131220170000038000100061automatedvolumetricintravascularplaqueclassificati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ronny Shalev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated Volumetric Intravascular Plaque Classification Using Optical Coherence Tomography</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Imaging techniques are a key tool in the diagnosis of disease. X-rays, ultrasound, CAT, and PET scans are now routinely used as a preliminary step to determine the extent of a disease and the need for and type of treatment (Tearney et al. 2006). These techniques generate vast quantities of data. The images that are produced must typically be analyzed by trained clinicians. This is extremely labor intensive, expensive, and can be prone to error. Thus, there is a need for, and an opportunity to, improve the quality of healthcare systems by developing automated aids to assist in this process. Given the patient-critical outcomes of the image-analysis process, a human analyst must always remain in the loop. In this article, the authors have discussed an important emerging application: an automated approach for early plaque detection in blood vessels. Their approach analyzes IVOCT images to solve this task.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coronary vessels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood clots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heart attacks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardiovascular disease</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daisuke Nakamura</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Setsu Nishino</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew M Rollins</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiram G Bezerra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David L Wilson</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soumya Ray</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">AI magazine</subfield><subfield code="d">Menlo Park, Calif. : AAAI, 1980</subfield><subfield code="g">38(2017), 1, Seite 61</subfield><subfield code="w">(DE-627)129136298</subfield><subfield code="w">(DE-600)46965-8</subfield><subfield code="w">(DE-576)014452987</subfield><subfield code="x">0738-4602</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:61</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1888749268</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">61</subfield></datafield></record></collection>
|
score |
7.400817 |