Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures
AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practic...
Ausführliche Beschreibung
Autor*in: |
Guo, Bingbing [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 American Society of Civil Engineers |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials in civil engineering - New York, NY : ASCE, 1989, 29(2017), 6 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2017 ; number:6 |
Links: |
---|
DOI / URN: |
10.1061/(ASCE)MT.1943-5533.0001837 |
---|
Katalog-ID: |
OLC1993161643 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1993161643 | ||
003 | DE-627 | ||
005 | 20230715044848.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1061/(ASCE)MT.1943-5533.0001837 |2 doi | |
028 | 5 | 2 | |a PQ20170501 |
035 | |a (DE-627)OLC1993161643 | ||
035 | |a (DE-599)GBVOLC1993161643 | ||
035 | |a (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 | ||
035 | |a (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
100 | 1 | |a Guo, Bingbing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. | ||
540 | |a Nutzungsrecht: © 2017 American Society of Civil Engineers | ||
650 | 4 | |a Technical Papers | |
700 | 1 | |a Ou, Jinping |4 oth | |
700 | 1 | |a Qiao, Guofu |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials in civil engineering |d New York, NY : ASCE, 1989 |g 29(2017), 6 |w (DE-627)130682012 |w (DE-600)885236-4 |w (DE-576)018669026 |x 0899-1561 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2017 |g number:6 |
856 | 4 | 1 | |u http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 |3 Volltext |
856 | 4 | 2 | |u http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 29 |j 2017 |e 6 |
author_variant |
b g bg |
---|---|
matchkey_str |
article:08991561:2017----::ueiasmltototmzipesdurnctoipoeto |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1061/(ASCE)MT.1943-5533.0001837 doi PQ20170501 (DE-627)OLC1993161643 (DE-599)GBVOLC1993161643 (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho DE-627 ger DE-627 rakwb eng 620 DE-600 Guo, Bingbing verfasserin aut Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Ou, Jinping oth Qiao, Guofu oth Enthalten in Journal of materials in civil engineering New York, NY : ASCE, 1989 29(2017), 6 (DE-627)130682012 (DE-600)885236-4 (DE-576)018669026 0899-1561 nnns volume:29 year:2017 number:6 http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 AR 29 2017 6 |
spelling |
10.1061/(ASCE)MT.1943-5533.0001837 doi PQ20170501 (DE-627)OLC1993161643 (DE-599)GBVOLC1993161643 (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho DE-627 ger DE-627 rakwb eng 620 DE-600 Guo, Bingbing verfasserin aut Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Ou, Jinping oth Qiao, Guofu oth Enthalten in Journal of materials in civil engineering New York, NY : ASCE, 1989 29(2017), 6 (DE-627)130682012 (DE-600)885236-4 (DE-576)018669026 0899-1561 nnns volume:29 year:2017 number:6 http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 AR 29 2017 6 |
allfields_unstemmed |
10.1061/(ASCE)MT.1943-5533.0001837 doi PQ20170501 (DE-627)OLC1993161643 (DE-599)GBVOLC1993161643 (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho DE-627 ger DE-627 rakwb eng 620 DE-600 Guo, Bingbing verfasserin aut Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Ou, Jinping oth Qiao, Guofu oth Enthalten in Journal of materials in civil engineering New York, NY : ASCE, 1989 29(2017), 6 (DE-627)130682012 (DE-600)885236-4 (DE-576)018669026 0899-1561 nnns volume:29 year:2017 number:6 http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 AR 29 2017 6 |
allfieldsGer |
10.1061/(ASCE)MT.1943-5533.0001837 doi PQ20170501 (DE-627)OLC1993161643 (DE-599)GBVOLC1993161643 (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho DE-627 ger DE-627 rakwb eng 620 DE-600 Guo, Bingbing verfasserin aut Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Ou, Jinping oth Qiao, Guofu oth Enthalten in Journal of materials in civil engineering New York, NY : ASCE, 1989 29(2017), 6 (DE-627)130682012 (DE-600)885236-4 (DE-576)018669026 0899-1561 nnns volume:29 year:2017 number:6 http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 AR 29 2017 6 |
allfieldsSound |
10.1061/(ASCE)MT.1943-5533.0001837 doi PQ20170501 (DE-627)OLC1993161643 (DE-599)GBVOLC1993161643 (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho DE-627 ger DE-627 rakwb eng 620 DE-600 Guo, Bingbing verfasserin aut Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Ou, Jinping oth Qiao, Guofu oth Enthalten in Journal of materials in civil engineering New York, NY : ASCE, 1989 29(2017), 6 (DE-627)130682012 (DE-600)885236-4 (DE-576)018669026 0899-1561 nnns volume:29 year:2017 number:6 http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 AR 29 2017 6 |
language |
English |
source |
Enthalten in Journal of materials in civil engineering 29(2017), 6 volume:29 year:2017 number:6 |
sourceStr |
Enthalten in Journal of materials in civil engineering 29(2017), 6 volume:29 year:2017 number:6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Technical Papers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of materials in civil engineering |
authorswithroles_txt_mv |
Guo, Bingbing @@aut@@ Ou, Jinping @@oth@@ Qiao, Guofu @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130682012 |
dewey-sort |
3620 |
id |
OLC1993161643 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993161643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715044848.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1061/(ASCE)MT.1943-5533.0001837</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993161643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993161643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Bingbing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 American Society of Civil Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technical Papers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ou, Jinping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Guofu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials in civil engineering</subfield><subfield code="d">New York, NY : ASCE, 1989</subfield><subfield code="g">29(2017), 6</subfield><subfield code="w">(DE-627)130682012</subfield><subfield code="w">(DE-600)885236-4</subfield><subfield code="w">(DE-576)018669026</subfield><subfield code="x">0899-1561</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield></datafield></record></collection>
|
author |
Guo, Bingbing |
spellingShingle |
Guo, Bingbing ddc 620 misc Technical Papers Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures |
authorStr |
Guo, Bingbing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130682012 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0899-1561 |
topic_title |
620 DE-600 Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures Technical Papers |
topic |
ddc 620 misc Technical Papers |
topic_unstemmed |
ddc 620 misc Technical Papers |
topic_browse |
ddc 620 misc Technical Papers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j o jo g q gq |
hierarchy_parent_title |
Journal of materials in civil engineering |
hierarchy_parent_id |
130682012 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of materials in civil engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130682012 (DE-600)885236-4 (DE-576)018669026 |
title |
Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures |
ctrlnum |
(DE-627)OLC1993161643 (DE-599)GBVOLC1993161643 (PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830 (KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho |
title_full |
Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures |
author_sort |
Guo, Bingbing |
journal |
Journal of materials in civil engineering |
journalStr |
Journal of materials in civil engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Guo, Bingbing |
container_volume |
29 |
class |
620 DE-600 |
format_se |
Aufsätze |
author-letter |
Guo, Bingbing |
doi_str_mv |
10.1061/(ASCE)MT.1943-5533.0001837 |
dewey-full |
620 |
title_sort |
numerical simulation to optimize impressed current cathodic protection systems for rc structures |
title_auth |
Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures |
abstract |
AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. |
abstractGer |
AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. |
abstract_unstemmed |
AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 |
container_issue |
6 |
title_short |
Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures |
url |
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837 http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837 |
remote_bool |
false |
author2 |
Ou, Jinping Qiao, Guofu |
author2Str |
Ou, Jinping Qiao, Guofu |
ppnlink |
130682012 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1061/(ASCE)MT.1943-5533.0001837 |
up_date |
2024-07-03T13:38:03.205Z |
_version_ |
1803565277595566080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993161643</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715044848.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1061/(ASCE)MT.1943-5533.0001837</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993161643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993161643</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a987-7fc8a6860332388470d50f4438374f124cce701c8aa68d24dc683106e23911830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0175660520170000029000600000numericalsimulationtooptimizeimpressedcurrentcatho</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Bingbing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation to Optimize Impressed Current Cathodic Protection Systems for RC Structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractCorrosion of reinforcing steel is the primary degradation mechanism by which the long-term durability of RC structures can be seriously impaired. In order to mitigate reinforcement corrosion, impressed current cathodic protection (ICCP) is becoming an interesting option to be used in practice on real structures. In this study, the electrical field distribution of ICCP systems for RC structures with complicated geometry and multiple corrosion boundaries is investigated by using a finite-element method (FEM) numerical simulation method. The numerical optimization scheme for ICCP to control corrosion of RC structures is developed by tuning the amplitude of the impressed voltage, as well as the location and area size of the anode layer. Two prototypes of ICCP systems for RC structures are built to verify the effectiveness of the optimization algorithm under laboratory conditions. The testing results indicate that this optimization design scheme of ICCP systems can effectively control the corrosion of RC structures with multiple boundary conditions.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 American Society of Civil Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technical Papers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ou, Jinping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Guofu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials in civil engineering</subfield><subfield code="d">New York, NY : ASCE, 1989</subfield><subfield code="g">29(2017), 6</subfield><subfield code="w">(DE-627)130682012</subfield><subfield code="w">(DE-600)885236-4</subfield><subfield code="w">(DE-576)018669026</subfield><subfield code="x">0899-1561</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001837</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0001837</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield></datafield></record></collection>
|
score |
7.4008055 |