Degree sequence of random permutation graphs
In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we s...
Ausführliche Beschreibung
Autor*in: |
Bhaswar B Bhattacharya [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The annals of applied probability - Cleveland, Ohio : Inst. of Mathematical Statistics, 1991, 27(2017), 1, Seite 439 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2017 ; number:1 ; pages:439 |
Links: |
---|
Katalog-ID: |
OLC1993371761 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1993371761 | ||
003 | DE-627 | ||
005 | 20230715045942.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1993371761 | ||
035 | |a (DE-599)GBVOLC1993371761 | ||
035 | |a (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 | ||
035 | |a (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
100 | 0 | |a Bhaswar B Bhattacharya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Degree sequence of random permutation graphs |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) | ||
650 | 4 | |a Phase transitions | |
650 | 4 | |a Probability | |
650 | 4 | |a Random variables | |
650 | 4 | |a Transitions | |
650 | 4 | |a Theory | |
700 | 0 | |a Sumit Mukherjee |4 oth | |
773 | 0 | 8 | |i Enthalten in |t The annals of applied probability |d Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 |g 27(2017), 1, Seite 439 |w (DE-627)130971227 |w (DE-600)1070890-X |w (DE-576)025191543 |x 1050-5164 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2017 |g number:1 |g pages:439 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1876806846 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 27 |j 2017 |e 1 |h 439 |
author_variant |
b b b bbb |
---|---|
matchkey_str |
article:10505164:2017----::ereeunefadmem |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
PQ20170721 (DE-627)OLC1993371761 (DE-599)GBVOLC1993371761 (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs DE-627 ger DE-627 rakwb eng 510 DE-600 Bhaswar B Bhattacharya verfasserin aut Degree sequence of random permutation graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) Phase transitions Probability Random variables Transitions Theory Sumit Mukherjee oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 27(2017), 1, Seite 439 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:27 year:2017 number:1 pages:439 https://search.proquest.com/docview/1876806846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 27 2017 1 439 |
spelling |
PQ20170721 (DE-627)OLC1993371761 (DE-599)GBVOLC1993371761 (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs DE-627 ger DE-627 rakwb eng 510 DE-600 Bhaswar B Bhattacharya verfasserin aut Degree sequence of random permutation graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) Phase transitions Probability Random variables Transitions Theory Sumit Mukherjee oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 27(2017), 1, Seite 439 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:27 year:2017 number:1 pages:439 https://search.proquest.com/docview/1876806846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 27 2017 1 439 |
allfields_unstemmed |
PQ20170721 (DE-627)OLC1993371761 (DE-599)GBVOLC1993371761 (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs DE-627 ger DE-627 rakwb eng 510 DE-600 Bhaswar B Bhattacharya verfasserin aut Degree sequence of random permutation graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) Phase transitions Probability Random variables Transitions Theory Sumit Mukherjee oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 27(2017), 1, Seite 439 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:27 year:2017 number:1 pages:439 https://search.proquest.com/docview/1876806846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 27 2017 1 439 |
allfieldsGer |
PQ20170721 (DE-627)OLC1993371761 (DE-599)GBVOLC1993371761 (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs DE-627 ger DE-627 rakwb eng 510 DE-600 Bhaswar B Bhattacharya verfasserin aut Degree sequence of random permutation graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) Phase transitions Probability Random variables Transitions Theory Sumit Mukherjee oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 27(2017), 1, Seite 439 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:27 year:2017 number:1 pages:439 https://search.proquest.com/docview/1876806846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 27 2017 1 439 |
allfieldsSound |
PQ20170721 (DE-627)OLC1993371761 (DE-599)GBVOLC1993371761 (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs DE-627 ger DE-627 rakwb eng 510 DE-600 Bhaswar B Bhattacharya verfasserin aut Degree sequence of random permutation graphs 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) Phase transitions Probability Random variables Transitions Theory Sumit Mukherjee oth Enthalten in The annals of applied probability Cleveland, Ohio : Inst. of Mathematical Statistics, 1991 27(2017), 1, Seite 439 (DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 1050-5164 nnns volume:27 year:2017 number:1 pages:439 https://search.proquest.com/docview/1876806846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 AR 27 2017 1 439 |
language |
English |
source |
Enthalten in The annals of applied probability 27(2017), 1, Seite 439 volume:27 year:2017 number:1 pages:439 |
sourceStr |
Enthalten in The annals of applied probability 27(2017), 1, Seite 439 volume:27 year:2017 number:1 pages:439 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phase transitions Probability Random variables Transitions Theory |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The annals of applied probability |
authorswithroles_txt_mv |
Bhaswar B Bhattacharya @@aut@@ Sumit Mukherjee @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130971227 |
dewey-sort |
3510 |
id |
OLC1993371761 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993371761</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715045942.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993371761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993371761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bhaswar B Bhattacharya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degree sequence of random permutation graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sumit Mukherjee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The annals of applied probability</subfield><subfield code="d">Cleveland, Ohio : Inst. of Mathematical Statistics, 1991</subfield><subfield code="g">27(2017), 1, Seite 439</subfield><subfield code="w">(DE-627)130971227</subfield><subfield code="w">(DE-600)1070890-X</subfield><subfield code="w">(DE-576)025191543</subfield><subfield code="x">1050-5164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:439</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1876806846</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">439</subfield></datafield></record></collection>
|
author |
Bhaswar B Bhattacharya |
spellingShingle |
Bhaswar B Bhattacharya ddc 510 misc Phase transitions misc Probability misc Random variables misc Transitions misc Theory Degree sequence of random permutation graphs |
authorStr |
Bhaswar B Bhattacharya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130971227 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1050-5164 |
topic_title |
510 DE-600 Degree sequence of random permutation graphs Phase transitions Probability Random variables Transitions Theory |
topic |
ddc 510 misc Phase transitions misc Probability misc Random variables misc Transitions misc Theory |
topic_unstemmed |
ddc 510 misc Phase transitions misc Probability misc Random variables misc Transitions misc Theory |
topic_browse |
ddc 510 misc Phase transitions misc Probability misc Random variables misc Transitions misc Theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s m sm |
hierarchy_parent_title |
The annals of applied probability |
hierarchy_parent_id |
130971227 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The annals of applied probability |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130971227 (DE-600)1070890-X (DE-576)025191543 |
title |
Degree sequence of random permutation graphs |
ctrlnum |
(DE-627)OLC1993371761 (DE-599)GBVOLC1993371761 (PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70 (KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs |
title_full |
Degree sequence of random permutation graphs |
author_sort |
Bhaswar B Bhattacharya |
journal |
The annals of applied probability |
journalStr |
The annals of applied probability |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
439 |
author_browse |
Bhaswar B Bhattacharya |
container_volume |
27 |
class |
510 DE-600 |
format_se |
Aufsätze |
author-letter |
Bhaswar B Bhattacharya |
dewey-full |
510 |
title_sort |
degree sequence of random permutation graphs |
title_auth |
Degree sequence of random permutation graphs |
abstract |
In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) |
abstractGer |
In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) |
abstract_unstemmed |
In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.) |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_60 GBV_ILN_70 GBV_ILN_120 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2005 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Degree sequence of random permutation graphs |
url |
https://search.proquest.com/docview/1876806846 |
remote_bool |
false |
author2 |
Sumit Mukherjee |
author2Str |
Sumit Mukherjee |
ppnlink |
130971227 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
up_date |
2024-07-03T14:20:21.112Z |
_version_ |
1803567938792325120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993371761</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715045942.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993371761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993371761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1173-eda546e58217dd3b1eddfb71bf2cf96026e57934dba760b649c95cee5b45c7e70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0227692520170000027000100439degreesequenceofrandompermutationgraphs</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bhaswar B Bhattacharya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degree sequence of random permutation graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled ... in the associated permutation graph converges to independent random variables ..., where ..., for ... and ... Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well. (ProQuest: ... denotes formulae/symbols omitted.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sumit Mukherjee</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The annals of applied probability</subfield><subfield code="d">Cleveland, Ohio : Inst. of Mathematical Statistics, 1991</subfield><subfield code="g">27(2017), 1, Seite 439</subfield><subfield code="w">(DE-627)130971227</subfield><subfield code="w">(DE-600)1070890-X</subfield><subfield code="w">(DE-576)025191543</subfield><subfield code="x">1050-5164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:439</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1876806846</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">439</subfield></datafield></record></collection>
|
score |
7.401267 |