Revisiting the Kronecker Array Transform
It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the senso...
Ausführliche Beschreibung
Autor*in: |
Masiero, Bruno [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE signal processing letters - Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5, New York, NY, 19XX, 24(2017), 5, Seite 525-529 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2017 ; number:5 ; pages:525-529 |
Links: |
---|
DOI / URN: |
10.1109/LSP.2017.2674969 |
---|
Katalog-ID: |
OLC199340063X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199340063X | ||
003 | DE-627 | ||
005 | 20220216211404.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/LSP.2017.2674969 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC199340063X | ||
035 | |a (DE-599)GBVOLC199340063X | ||
035 | |a (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 | ||
035 | |a (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Masiero, Bruno |e verfasserin |4 aut | |
245 | 1 | 0 | |a Revisiting the Kronecker Array Transform |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. | ||
650 | 4 | |a Khatri–Rao identity | |
650 | 4 | |a Transmission line matrix methods | |
650 | 4 | |a Transforms | |
650 | 4 | |a Kronecker array transform | |
650 | 4 | |a Sensor arrays | |
650 | 4 | |a microphone array | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Manifolds | |
650 | 4 | |a Acoustic arrays | |
650 | 4 | |a Microphones | |
650 | 4 | |a Fast acoustic imaging | |
700 | 1 | |a Nascimento, Vitor H |4 oth | |
773 | 0 | 8 | |i Enthalten in |a Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 |t IEEE signal processing letters |d New York, NY, 19XX |g 24(2017), 5, Seite 525-529 |w (DE-627)182273075 |w (DE-600)916964-7 |x 1070-9908 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2017 |g number:5 |g pages:525-529 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/LSP.2017.2674969 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7864371 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 24 |j 2017 |e 5 |h 525-529 |
author_variant |
b m bm |
---|---|
matchkey_str |
article:10709908:2017----::eiiighkoekrra |
hierarchy_sort_str |
2017 |
bklnumber |
53.00 |
publishDate |
2017 |
allfields |
10.1109/LSP.2017.2674969 doi PQ20170901 (DE-627)OLC199340063X (DE-599)GBVOLC199340063X (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform DE-627 ger DE-627 rakwb eng 53.00 bkl Masiero, Bruno verfasserin aut Revisiting the Kronecker Array Transform 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging Nascimento, Vitor H oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 24(2017), 5, Seite 525-529 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:24 year:2017 number:5 pages:525-529 http://dx.doi.org/10.1109/LSP.2017.2674969 Volltext http://ieeexplore.ieee.org/document/7864371 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 24 2017 5 525-529 |
spelling |
10.1109/LSP.2017.2674969 doi PQ20170901 (DE-627)OLC199340063X (DE-599)GBVOLC199340063X (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform DE-627 ger DE-627 rakwb eng 53.00 bkl Masiero, Bruno verfasserin aut Revisiting the Kronecker Array Transform 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging Nascimento, Vitor H oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 24(2017), 5, Seite 525-529 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:24 year:2017 number:5 pages:525-529 http://dx.doi.org/10.1109/LSP.2017.2674969 Volltext http://ieeexplore.ieee.org/document/7864371 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 24 2017 5 525-529 |
allfields_unstemmed |
10.1109/LSP.2017.2674969 doi PQ20170901 (DE-627)OLC199340063X (DE-599)GBVOLC199340063X (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform DE-627 ger DE-627 rakwb eng 53.00 bkl Masiero, Bruno verfasserin aut Revisiting the Kronecker Array Transform 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging Nascimento, Vitor H oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 24(2017), 5, Seite 525-529 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:24 year:2017 number:5 pages:525-529 http://dx.doi.org/10.1109/LSP.2017.2674969 Volltext http://ieeexplore.ieee.org/document/7864371 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 24 2017 5 525-529 |
allfieldsGer |
10.1109/LSP.2017.2674969 doi PQ20170901 (DE-627)OLC199340063X (DE-599)GBVOLC199340063X (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform DE-627 ger DE-627 rakwb eng 53.00 bkl Masiero, Bruno verfasserin aut Revisiting the Kronecker Array Transform 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging Nascimento, Vitor H oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 24(2017), 5, Seite 525-529 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:24 year:2017 number:5 pages:525-529 http://dx.doi.org/10.1109/LSP.2017.2674969 Volltext http://ieeexplore.ieee.org/document/7864371 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 24 2017 5 525-529 |
allfieldsSound |
10.1109/LSP.2017.2674969 doi PQ20170901 (DE-627)OLC199340063X (DE-599)GBVOLC199340063X (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform DE-627 ger DE-627 rakwb eng 53.00 bkl Masiero, Bruno verfasserin aut Revisiting the Kronecker Array Transform 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging Nascimento, Vitor H oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 24(2017), 5, Seite 525-529 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:24 year:2017 number:5 pages:525-529 http://dx.doi.org/10.1109/LSP.2017.2674969 Volltext http://ieeexplore.ieee.org/document/7864371 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 24 2017 5 525-529 |
language |
English |
source |
Enthalten in IEEE signal processing letters 24(2017), 5, Seite 525-529 volume:24 year:2017 number:5 pages:525-529 |
sourceStr |
Enthalten in IEEE signal processing letters 24(2017), 5, Seite 525-529 volume:24 year:2017 number:5 pages:525-529 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging |
isfreeaccess_bool |
false |
container_title |
IEEE signal processing letters |
authorswithroles_txt_mv |
Masiero, Bruno @@aut@@ Nascimento, Vitor H @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
182273075 |
id |
OLC199340063X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199340063X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216211404.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LSP.2017.2674969</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199340063X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199340063X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Masiero, Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revisiting the Kronecker Array Transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Khatri–Rao identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission line matrix methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kronecker array transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensor arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microphone array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustic arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microphones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast acoustic imaging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nascimento, Vitor H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5</subfield><subfield code="t">IEEE signal processing letters</subfield><subfield code="d">New York, NY, 19XX</subfield><subfield code="g">24(2017), 5, Seite 525-529</subfield><subfield code="w">(DE-627)182273075</subfield><subfield code="w">(DE-600)916964-7</subfield><subfield code="x">1070-9908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:525-529</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LSP.2017.2674969</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7864371</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">525-529</subfield></datafield></record></collection>
|
author |
Masiero, Bruno |
spellingShingle |
Masiero, Bruno bkl 53.00 misc Khatri–Rao identity misc Transmission line matrix methods misc Transforms misc Kronecker array transform misc Sensor arrays misc microphone array misc Acoustics misc Manifolds misc Acoustic arrays misc Microphones misc Fast acoustic imaging Revisiting the Kronecker Array Transform |
authorStr |
Masiero, Bruno |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182273075 |
format |
Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1070-9908 |
topic_title |
53.00 bkl Revisiting the Kronecker Array Transform Khatri–Rao identity Transmission line matrix methods Transforms Kronecker array transform Sensor arrays microphone array Acoustics Manifolds Acoustic arrays Microphones Fast acoustic imaging |
topic |
bkl 53.00 misc Khatri–Rao identity misc Transmission line matrix methods misc Transforms misc Kronecker array transform misc Sensor arrays misc microphone array misc Acoustics misc Manifolds misc Acoustic arrays misc Microphones misc Fast acoustic imaging |
topic_unstemmed |
bkl 53.00 misc Khatri–Rao identity misc Transmission line matrix methods misc Transforms misc Kronecker array transform misc Sensor arrays misc microphone array misc Acoustics misc Manifolds misc Acoustic arrays misc Microphones misc Fast acoustic imaging |
topic_browse |
bkl 53.00 misc Khatri–Rao identity misc Transmission line matrix methods misc Transforms misc Kronecker array transform misc Sensor arrays misc microphone array misc Acoustics misc Manifolds misc Acoustic arrays misc Microphones misc Fast acoustic imaging |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
v h n vh vhn |
hierarchy_parent_title |
IEEE signal processing letters |
hierarchy_parent_id |
182273075 |
hierarchy_top_title |
IEEE signal processing letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182273075 (DE-600)916964-7 |
title |
Revisiting the Kronecker Array Transform |
ctrlnum |
(DE-627)OLC199340063X (DE-599)GBVOLC199340063X (PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680 (KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform |
title_full |
Revisiting the Kronecker Array Transform |
author_sort |
Masiero, Bruno |
journal |
IEEE signal processing letters |
journalStr |
IEEE signal processing letters |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
525 |
author_browse |
Masiero, Bruno |
container_volume |
24 |
class |
53.00 bkl |
format_se |
Aufsätze |
author-letter |
Masiero, Bruno |
doi_str_mv |
10.1109/LSP.2017.2674969 |
title_sort |
revisiting the kronecker array transform |
title_auth |
Revisiting the Kronecker Array Transform |
abstract |
It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. |
abstractGer |
It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. |
abstract_unstemmed |
It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
5 |
title_short |
Revisiting the Kronecker Array Transform |
url |
http://dx.doi.org/10.1109/LSP.2017.2674969 http://ieeexplore.ieee.org/document/7864371 |
remote_bool |
false |
author2 |
Nascimento, Vitor H |
author2Str |
Nascimento, Vitor H |
ppnlink |
182273075 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/LSP.2017.2674969 |
up_date |
2024-07-03T14:25:56.954Z |
_version_ |
1803568290943991808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199340063X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216211404.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LSP.2017.2674969</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199340063X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199340063X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1061-623545300ad85f92a5528d9dbef181a604f77990b84baad487f138c5f5cf92680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)02390256u20170000024000500525revisitingthekroneckerarraytransform</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Masiero, Bruno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revisiting the Kronecker Array Transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Khatri–Rao identity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission line matrix methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kronecker array transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensor arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microphone array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustic arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microphones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast acoustic imaging</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nascimento, Vitor H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5</subfield><subfield code="t">IEEE signal processing letters</subfield><subfield code="d">New York, NY, 19XX</subfield><subfield code="g">24(2017), 5, Seite 525-529</subfield><subfield code="w">(DE-627)182273075</subfield><subfield code="w">(DE-600)916964-7</subfield><subfield code="x">1070-9908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:525-529</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LSP.2017.2674969</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7864371</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">525-529</subfield></datafield></record></collection>
|
score |
7.4008856 |