Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes
The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two...
Ausführliche Beschreibung
Autor*in: |
Li, Xiaojuan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 114(2017), 10, Seite 2765 |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2017 ; number:10 ; pages:2765 |
Links: |
---|
DOI / URN: |
10.1073/pnas.1618782114 |
---|
Katalog-ID: |
OLC1993657134 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1993657134 | ||
003 | DE-627 | ||
005 | 20230715050939.0 | ||
007 | tu | ||
008 | 170512s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1618782114 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1993657134 | ||
035 | |a (DE-599)GBVOLC1993657134 | ||
035 | |a (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 | ||
035 | |a (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DE-101 |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 1 | |a Li, Xiaojuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. | ||
650 | 4 | |a Observations | |
650 | 4 | |a Cell proliferation | |
650 | 4 | |a Arabidopsis thaliana | |
650 | 4 | |a Rapamycin | |
650 | 4 | |a Physiological aspects | |
650 | 4 | |a Tissue | |
650 | 4 | |a Glucose | |
650 | 4 | |a Flowers & plants | |
650 | 4 | |a Proteins | |
650 | 4 | |a Biosynthesis | |
650 | 4 | |a Cell cycle | |
700 | 1 | |a Cai, Wenguo |4 oth | |
700 | 1 | |a Liu, Yanlin |4 oth | |
700 | 1 | |a Li, Hui |4 oth | |
700 | 1 | |a Fu, Liwen |4 oth | |
700 | 1 | |a Liu, Zengyu |4 oth | |
700 | 1 | |a Xu, Lin |4 oth | |
700 | 1 | |a Liu, Hongtao |4 oth | |
700 | 1 | |a Xu, Tongda |4 oth | |
700 | 1 | |a Xiong, Yan |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 114(2017), 10, Seite 2765 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:114 |g year:2017 |g number:10 |g pages:2765 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1618782114 |3 Volltext |
856 | 4 | 2 | |u https://search.proquest.com/docview/1881969039 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 114 |j 2017 |e 10 |h 2765 |
author_variant |
x l xl |
---|---|
matchkey_str |
article:00278424:2017----::ifrniloatvtoadelrlfrtoiaaios |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1073/pnas.1618782114 doi PQ20170721 (DE-627)OLC1993657134 (DE-599)GBVOLC1993657134 (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Li, Xiaojuan verfasserin aut Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle Cai, Wenguo oth Liu, Yanlin oth Li, Hui oth Fu, Liwen oth Liu, Zengyu oth Xu, Lin oth Liu, Hongtao oth Xu, Tongda oth Xiong, Yan oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 10, Seite 2765 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:10 pages:2765 http://dx.doi.org/10.1073/pnas.1618782114 Volltext https://search.proquest.com/docview/1881969039 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 10 2765 |
spelling |
10.1073/pnas.1618782114 doi PQ20170721 (DE-627)OLC1993657134 (DE-599)GBVOLC1993657134 (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Li, Xiaojuan verfasserin aut Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle Cai, Wenguo oth Liu, Yanlin oth Li, Hui oth Fu, Liwen oth Liu, Zengyu oth Xu, Lin oth Liu, Hongtao oth Xu, Tongda oth Xiong, Yan oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 10, Seite 2765 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:10 pages:2765 http://dx.doi.org/10.1073/pnas.1618782114 Volltext https://search.proquest.com/docview/1881969039 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 10 2765 |
allfields_unstemmed |
10.1073/pnas.1618782114 doi PQ20170721 (DE-627)OLC1993657134 (DE-599)GBVOLC1993657134 (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Li, Xiaojuan verfasserin aut Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle Cai, Wenguo oth Liu, Yanlin oth Li, Hui oth Fu, Liwen oth Liu, Zengyu oth Xu, Lin oth Liu, Hongtao oth Xu, Tongda oth Xiong, Yan oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 10, Seite 2765 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:10 pages:2765 http://dx.doi.org/10.1073/pnas.1618782114 Volltext https://search.proquest.com/docview/1881969039 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 10 2765 |
allfieldsGer |
10.1073/pnas.1618782114 doi PQ20170721 (DE-627)OLC1993657134 (DE-599)GBVOLC1993657134 (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Li, Xiaojuan verfasserin aut Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle Cai, Wenguo oth Liu, Yanlin oth Li, Hui oth Fu, Liwen oth Liu, Zengyu oth Xu, Lin oth Liu, Hongtao oth Xu, Tongda oth Xiong, Yan oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 10, Seite 2765 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:10 pages:2765 http://dx.doi.org/10.1073/pnas.1618782114 Volltext https://search.proquest.com/docview/1881969039 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 10 2765 |
allfieldsSound |
10.1073/pnas.1618782114 doi PQ20170721 (DE-627)OLC1993657134 (DE-599)GBVOLC1993657134 (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Li, Xiaojuan verfasserin aut Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle Cai, Wenguo oth Liu, Yanlin oth Li, Hui oth Fu, Liwen oth Liu, Zengyu oth Xu, Lin oth Liu, Hongtao oth Xu, Tongda oth Xiong, Yan oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 10, Seite 2765 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:10 pages:2765 http://dx.doi.org/10.1073/pnas.1618782114 Volltext https://search.proquest.com/docview/1881969039 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 10 2765 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 114(2017), 10, Seite 2765 volume:114 year:2017 number:10 pages:2765 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 114(2017), 10, Seite 2765 volume:114 year:2017 number:10 pages:2765 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Li, Xiaojuan @@aut@@ Cai, Wenguo @@oth@@ Liu, Yanlin @@oth@@ Li, Hui @@oth@@ Fu, Liwen @@oth@@ Liu, Zengyu @@oth@@ Xu, Lin @@oth@@ Liu, Hongtao @@oth@@ Xu, Tongda @@oth@@ Xiong, Yan @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC1993657134 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993657134</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715050939.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1618782114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993657134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993657134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiaojuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell proliferation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis thaliana</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rapamycin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flowers & plants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell cycle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Wenguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yanlin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Liwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zengyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hongtao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Tongda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Yan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">114(2017), 10, Seite 2765</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2765</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1618782114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1881969039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">2765</subfield></datafield></record></collection>
|
author |
Li, Xiaojuan |
spellingShingle |
Li, Xiaojuan ddc 500 ddc 570 fid LING fid BIODIV misc Observations misc Cell proliferation misc Arabidopsis thaliana misc Rapamycin misc Physiological aspects misc Tissue misc Glucose misc Flowers & plants misc Proteins misc Biosynthesis misc Cell cycle Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes |
authorStr |
Li, Xiaojuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DE-101 570 AVZ LING fid BIODIV fid Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes Observations Cell proliferation Arabidopsis thaliana Rapamycin Physiological aspects Tissue Glucose Flowers & plants Proteins Biosynthesis Cell cycle |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc Observations misc Cell proliferation misc Arabidopsis thaliana misc Rapamycin misc Physiological aspects misc Tissue misc Glucose misc Flowers & plants misc Proteins misc Biosynthesis misc Cell cycle |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc Observations misc Cell proliferation misc Arabidopsis thaliana misc Rapamycin misc Physiological aspects misc Tissue misc Glucose misc Flowers & plants misc Proteins misc Biosynthesis misc Cell cycle |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc Observations misc Cell proliferation misc Arabidopsis thaliana misc Rapamycin misc Physiological aspects misc Tissue misc Glucose misc Flowers & plants misc Proteins misc Biosynthesis misc Cell cycle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w c wc y l yl h l hl l f lf z l zl l x lx h l hl t x tx y x yx |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes |
ctrlnum |
(DE-627)OLC1993657134 (DE-599)GBVOLC1993657134 (PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0 (KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara |
title_full |
Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes |
author_sort |
Li, Xiaojuan |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2765 |
author_browse |
Li, Xiaojuan |
container_volume |
114 |
class |
500 DE-101 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Li, Xiaojuan |
doi_str_mv |
10.1073/pnas.1618782114 |
dewey-full |
500 570 |
title_sort |
differential tor activation and cell proliferation in arabidopsis root and shoot apexes |
title_auth |
Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes |
abstract |
The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. |
abstractGer |
The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. |
abstract_unstemmed |
The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
10 |
title_short |
Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes |
url |
http://dx.doi.org/10.1073/pnas.1618782114 https://search.proquest.com/docview/1881969039 |
remote_bool |
false |
author2 |
Cai, Wenguo Liu, Yanlin Li, Hui Fu, Liwen Liu, Zengyu Xu, Lin Liu, Hongtao Xu, Tongda Xiong, Yan |
author2Str |
Cai, Wenguo Liu, Yanlin Li, Hui Fu, Liwen Liu, Zengyu Xu, Lin Liu, Hongtao Xu, Tongda Xiong, Yan |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1073/pnas.1618782114 |
up_date |
2024-07-03T15:16:20.406Z |
_version_ |
1803571461257953280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1993657134</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715050939.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170512s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1618782114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1993657134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1993657134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1806-860a7f9e5c709ff1894f6fce13fe7e922a1c1274e54afab34a5cc1467381d0bc0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920170000114001002765differentialtoractivationandcellproliferationinara</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiaojuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell proliferation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis thaliana</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rapamycin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tissue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flowers & plants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell cycle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Wenguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yanlin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Hui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Liwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zengyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hongtao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Tongda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Yan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">114(2017), 10, Seite 2765</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2765</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1618782114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1881969039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">2765</subfield></datafield></record></collection>
|
score |
7.4009285 |