First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering
A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-...
Ausführliche Beschreibung
Autor*in: |
Baxter, D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Physical review letters - Ridge, NY : American Physical Society, 1958, (2017) |
---|---|
Übergeordnetes Werk: |
year:2017 |
Links: |
---|
DOI / URN: |
10.1103/PhysRevLett.118.231301 |
---|
Katalog-ID: |
OLC199403582X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199403582X | ||
003 | DE-627 | ||
005 | 20220224042844.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevLett.118.231301 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC199403582X | ||
035 | |a (DE-599)GBVOLC199403582X | ||
035 | |a (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 | ||
035 | |a (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a UA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Baxter, D |e verfasserin |4 aut | |
245 | 1 | 0 | |a First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. | ||
650 | 4 | |a Instrumentation and Detectors | |
650 | 4 | |a Cosmology and Nongalactic Astrophysics | |
650 | 4 | |a Physics | |
650 | 4 | |a High Energy Physics | |
650 | 4 | |a Astrophysics | |
650 | 4 | |a Experiment | |
700 | 1 | |a Chen, C. J |4 oth | |
700 | 1 | |a Crisler, M |4 oth | |
700 | 1 | |a Cwiok, T |4 oth | |
700 | 1 | |a Dahl, C. E |4 oth | |
700 | 1 | |a Grimsted, A |4 oth | |
700 | 1 | |a Gupta, J |4 oth | |
700 | 1 | |a Jin, M |4 oth | |
700 | 1 | |a Puig, R |4 oth | |
700 | 1 | |a Temples, D |4 oth | |
700 | 1 | |a Zhang, J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physical review letters |d Ridge, NY : American Physical Society, 1958 |g (2017) |w (DE-627)129503959 |w (DE-600)208853-8 |w (DE-576)014907267 |x 0031-9007 |7 nnns |
773 | 1 | 8 | |g year:2017 |
856 | 4 | 1 | |u http://dx.doi.org/10.1103/PhysRevLett.118.231301 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1702.08861 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
936 | r | v | |a UA 1000 |
951 | |a AR | ||
952 | |j 2017 |
author_variant |
d b db |
---|---|
matchkey_str |
article:00319007:2017----::isdmntainfsitlaigeobblcabrodtcigakatrnchrne |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1103/PhysRevLett.118.231301 doi PQ20171125 (DE-627)OLC199403582X (DE-599)GBVOLC199403582X (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Baxter, D verfasserin aut First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment Chen, C. J oth Crisler, M oth Cwiok, T oth Dahl, C. E oth Grimsted, A oth Gupta, J oth Jin, M oth Puig, R oth Temples, D oth Zhang, J oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.118.231301 Volltext http://arxiv.org/abs/1702.08861 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
spelling |
10.1103/PhysRevLett.118.231301 doi PQ20171125 (DE-627)OLC199403582X (DE-599)GBVOLC199403582X (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Baxter, D verfasserin aut First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment Chen, C. J oth Crisler, M oth Cwiok, T oth Dahl, C. E oth Grimsted, A oth Gupta, J oth Jin, M oth Puig, R oth Temples, D oth Zhang, J oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.118.231301 Volltext http://arxiv.org/abs/1702.08861 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
allfields_unstemmed |
10.1103/PhysRevLett.118.231301 doi PQ20171125 (DE-627)OLC199403582X (DE-599)GBVOLC199403582X (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Baxter, D verfasserin aut First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment Chen, C. J oth Crisler, M oth Cwiok, T oth Dahl, C. E oth Grimsted, A oth Gupta, J oth Jin, M oth Puig, R oth Temples, D oth Zhang, J oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.118.231301 Volltext http://arxiv.org/abs/1702.08861 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
allfieldsGer |
10.1103/PhysRevLett.118.231301 doi PQ20171125 (DE-627)OLC199403582X (DE-599)GBVOLC199403582X (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Baxter, D verfasserin aut First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment Chen, C. J oth Crisler, M oth Cwiok, T oth Dahl, C. E oth Grimsted, A oth Gupta, J oth Jin, M oth Puig, R oth Temples, D oth Zhang, J oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.118.231301 Volltext http://arxiv.org/abs/1702.08861 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
allfieldsSound |
10.1103/PhysRevLett.118.231301 doi PQ20171125 (DE-627)OLC199403582X (DE-599)GBVOLC199403582X (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Baxter, D verfasserin aut First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment Chen, C. J oth Crisler, M oth Cwiok, T oth Dahl, C. E oth Grimsted, A oth Gupta, J oth Jin, M oth Puig, R oth Temples, D oth Zhang, J oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.118.231301 Volltext http://arxiv.org/abs/1702.08861 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
language |
English |
source |
Enthalten in Physical review letters (2017) year:2017 |
sourceStr |
Enthalten in Physical review letters (2017) year:2017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Physical review letters |
authorswithroles_txt_mv |
Baxter, D @@aut@@ Chen, C. J @@oth@@ Crisler, M @@oth@@ Cwiok, T @@oth@@ Dahl, C. E @@oth@@ Grimsted, A @@oth@@ Gupta, J @@oth@@ Jin, M @@oth@@ Puig, R @@oth@@ Temples, D @@oth@@ Zhang, J @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129503959 |
dewey-sort |
3550 |
id |
OLC199403582X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199403582X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042844.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.118.231301</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199403582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199403582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baxter, D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology and Nongalactic Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, C. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crisler, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cwiok, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dahl, C. E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grimsted, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puig, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Temples, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.118.231301</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1702.08861</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
author |
Baxter, D |
spellingShingle |
Baxter, D ddc 550 rvk UA 1000 misc Instrumentation and Detectors misc Cosmology and Nongalactic Astrophysics misc Physics misc High Energy Physics misc Astrophysics misc Experiment First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering |
authorStr |
Baxter, D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129503959 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0031-9007 |
topic_title |
550 DNB UA 1000 AVZ rvk First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering Instrumentation and Detectors Cosmology and Nongalactic Astrophysics Physics High Energy Physics Astrophysics Experiment |
topic |
ddc 550 rvk UA 1000 misc Instrumentation and Detectors misc Cosmology and Nongalactic Astrophysics misc Physics misc High Energy Physics misc Astrophysics misc Experiment |
topic_unstemmed |
ddc 550 rvk UA 1000 misc Instrumentation and Detectors misc Cosmology and Nongalactic Astrophysics misc Physics misc High Energy Physics misc Astrophysics misc Experiment |
topic_browse |
ddc 550 rvk UA 1000 misc Instrumentation and Detectors misc Cosmology and Nongalactic Astrophysics misc Physics misc High Energy Physics misc Astrophysics misc Experiment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c j c cj cjc m c mc t c tc c e d ce ced a g ag j g jg m j mj r p rp d t dt j z jz |
hierarchy_parent_title |
Physical review letters |
hierarchy_parent_id |
129503959 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Physical review letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 |
title |
First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering |
ctrlnum |
(DE-627)OLC199403582X (DE-599)GBVOLC199403582X (PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0 (KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb |
title_full |
First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering |
author_sort |
Baxter, D |
journal |
Physical review letters |
journalStr |
Physical review letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Baxter, D |
class |
550 DNB UA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Baxter, D |
doi_str_mv |
10.1103/PhysRevLett.118.231301 |
dewey-full |
550 |
title_sort |
first demonstration of a scintillating xenon bubble chamber for detecting dark matter and coherent elastic neutrino-nucleus scattering |
title_auth |
First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering |
abstract |
A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. |
abstractGer |
A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. |
abstract_unstemmed |
A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 |
title_short |
First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering |
url |
http://dx.doi.org/10.1103/PhysRevLett.118.231301 http://arxiv.org/abs/1702.08861 |
remote_bool |
false |
author2 |
Chen, C. J Crisler, M Cwiok, T Dahl, C. E Grimsted, A Gupta, J Jin, M Puig, R Temples, D Zhang, J |
author2Str |
Chen, C. J Crisler, M Cwiok, T Dahl, C. E Grimsted, A Gupta, J Jin, M Puig, R Temples, D Zhang, J |
ppnlink |
129503959 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1103/PhysRevLett.118.231301 |
up_date |
2024-07-03T16:15:08.085Z |
_version_ |
1803575160304828416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199403582X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042844.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.118.231301</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199403582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199403582X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a745-37fa6d97b61db152d2912b108298908daf169fd662a380b2ac0222e8f88ba5ab0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020170000000000000000firstdemonstrationofascintillatingxenonbubblechamb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baxter, D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19\pm6 keV (1\sigma uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3\times10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_3I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology and Nongalactic Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, C. J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crisler, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cwiok, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dahl, C. E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grimsted, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puig, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Temples, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.118.231301</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1702.08861</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
score |
7.4005327 |