A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing th...
Ausführliche Beschreibung
Autor*in: |
Persaud, A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © Author(s) |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Review of scientific instruments - Melville, NY : AIP, 1930, 88(2017), 6 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2017 ; number:6 |
Links: |
---|
DOI / URN: |
10.1063/1.4984969 |
---|
Katalog-ID: |
OLC1994114703 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1994114703 | ||
003 | DE-627 | ||
005 | 20230715052327.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.4984969 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC1994114703 | ||
035 | |a (DE-599)GBVOLC1994114703 | ||
035 | |a (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 | ||
035 | |a (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
100 | 1 | |a Persaud, A |e verfasserin |4 aut | |
245 | 1 | 2 | |a A compact linear accelerator based on a scalable microelectromechanical-system RF-structure |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. | ||
540 | |a Nutzungsrecht: © Author(s) | ||
650 | 4 | |a Physics | |
650 | 4 | |a Accelerator Physics | |
700 | 1 | |a Ji, Q |4 oth | |
700 | 1 | |a Feinberg, E |4 oth | |
700 | 1 | |a Seidl, P. A |4 oth | |
700 | 1 | |a Waldron, W. L |4 oth | |
700 | 1 | |a Schenkel, T |4 oth | |
700 | 1 | |a Lal, A |4 oth | |
700 | 1 | |a Vinayakumar, K. B |4 oth | |
700 | 1 | |a Ardanuc, S |4 oth | |
700 | 1 | |a Hammer, D. A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Review of scientific instruments |d Melville, NY : AIP, 1930 |g 88(2017), 6 |w (DE-627)129509175 |w (DE-600)209865-9 |w (DE-576)014915782 |x 0034-6748 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2017 |g number:6 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.4984969 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1063/1.4984969 |
856 | 4 | 2 | |u http://arxiv.org/abs/1610.09723 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
951 | |a AR | ||
952 | |d 88 |j 2017 |e 6 |
author_variant |
a p ap |
---|---|
matchkey_str |
article:00346748:2017----::cmatierceeaobsdnsaalmcolcrmcai |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1063/1.4984969 doi PQ20170901 (DE-627)OLC1994114703 (DE-599)GBVOLC1994114703 (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect DE-627 ger DE-627 rakwb eng 530 620 DE-600 Persaud, A verfasserin aut A compact linear accelerator based on a scalable microelectromechanical-system RF-structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. Nutzungsrecht: © Author(s) Physics Accelerator Physics Ji, Q oth Feinberg, E oth Seidl, P. A oth Waldron, W. L oth Schenkel, T oth Lal, A oth Vinayakumar, K. B oth Ardanuc, S oth Hammer, D. A oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 88(2017), 6 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:88 year:2017 number:6 http://dx.doi.org/10.1063/1.4984969 Volltext http://dx.doi.org/10.1063/1.4984969 http://arxiv.org/abs/1610.09723 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 88 2017 6 |
spelling |
10.1063/1.4984969 doi PQ20170901 (DE-627)OLC1994114703 (DE-599)GBVOLC1994114703 (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect DE-627 ger DE-627 rakwb eng 530 620 DE-600 Persaud, A verfasserin aut A compact linear accelerator based on a scalable microelectromechanical-system RF-structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. Nutzungsrecht: © Author(s) Physics Accelerator Physics Ji, Q oth Feinberg, E oth Seidl, P. A oth Waldron, W. L oth Schenkel, T oth Lal, A oth Vinayakumar, K. B oth Ardanuc, S oth Hammer, D. A oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 88(2017), 6 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:88 year:2017 number:6 http://dx.doi.org/10.1063/1.4984969 Volltext http://dx.doi.org/10.1063/1.4984969 http://arxiv.org/abs/1610.09723 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 88 2017 6 |
allfields_unstemmed |
10.1063/1.4984969 doi PQ20170901 (DE-627)OLC1994114703 (DE-599)GBVOLC1994114703 (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect DE-627 ger DE-627 rakwb eng 530 620 DE-600 Persaud, A verfasserin aut A compact linear accelerator based on a scalable microelectromechanical-system RF-structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. Nutzungsrecht: © Author(s) Physics Accelerator Physics Ji, Q oth Feinberg, E oth Seidl, P. A oth Waldron, W. L oth Schenkel, T oth Lal, A oth Vinayakumar, K. B oth Ardanuc, S oth Hammer, D. A oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 88(2017), 6 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:88 year:2017 number:6 http://dx.doi.org/10.1063/1.4984969 Volltext http://dx.doi.org/10.1063/1.4984969 http://arxiv.org/abs/1610.09723 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 88 2017 6 |
allfieldsGer |
10.1063/1.4984969 doi PQ20170901 (DE-627)OLC1994114703 (DE-599)GBVOLC1994114703 (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect DE-627 ger DE-627 rakwb eng 530 620 DE-600 Persaud, A verfasserin aut A compact linear accelerator based on a scalable microelectromechanical-system RF-structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. Nutzungsrecht: © Author(s) Physics Accelerator Physics Ji, Q oth Feinberg, E oth Seidl, P. A oth Waldron, W. L oth Schenkel, T oth Lal, A oth Vinayakumar, K. B oth Ardanuc, S oth Hammer, D. A oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 88(2017), 6 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:88 year:2017 number:6 http://dx.doi.org/10.1063/1.4984969 Volltext http://dx.doi.org/10.1063/1.4984969 http://arxiv.org/abs/1610.09723 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 88 2017 6 |
allfieldsSound |
10.1063/1.4984969 doi PQ20170901 (DE-627)OLC1994114703 (DE-599)GBVOLC1994114703 (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect DE-627 ger DE-627 rakwb eng 530 620 DE-600 Persaud, A verfasserin aut A compact linear accelerator based on a scalable microelectromechanical-system RF-structure 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. Nutzungsrecht: © Author(s) Physics Accelerator Physics Ji, Q oth Feinberg, E oth Seidl, P. A oth Waldron, W. L oth Schenkel, T oth Lal, A oth Vinayakumar, K. B oth Ardanuc, S oth Hammer, D. A oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 88(2017), 6 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:88 year:2017 number:6 http://dx.doi.org/10.1063/1.4984969 Volltext http://dx.doi.org/10.1063/1.4984969 http://arxiv.org/abs/1610.09723 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 88 2017 6 |
language |
English |
source |
Enthalten in Review of scientific instruments 88(2017), 6 volume:88 year:2017 number:6 |
sourceStr |
Enthalten in Review of scientific instruments 88(2017), 6 volume:88 year:2017 number:6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Accelerator Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Review of scientific instruments |
authorswithroles_txt_mv |
Persaud, A @@aut@@ Ji, Q @@oth@@ Feinberg, E @@oth@@ Seidl, P. A @@oth@@ Waldron, W. L @@oth@@ Schenkel, T @@oth@@ Lal, A @@oth@@ Vinayakumar, K. B @@oth@@ Ardanuc, S @@oth@@ Hammer, D. A @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129509175 |
dewey-sort |
3530 |
id |
OLC1994114703 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994114703</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715052327.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4984969</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994114703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994114703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Persaud, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A compact linear accelerator based on a scalable microelectromechanical-system RF-structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Q</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feinberg, E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seidl, P. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waldron, W. L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schenkel, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lal, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vinayakumar, K. B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ardanuc, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hammer, D. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Review of scientific instruments</subfield><subfield code="d">Melville, NY : AIP, 1930</subfield><subfield code="g">88(2017), 6</subfield><subfield code="w">(DE-627)129509175</subfield><subfield code="w">(DE-600)209865-9</subfield><subfield code="w">(DE-576)014915782</subfield><subfield code="x">0034-6748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4984969</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4984969</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1610.09723</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield></datafield></record></collection>
|
author |
Persaud, A |
spellingShingle |
Persaud, A ddc 530 misc Physics misc Accelerator Physics A compact linear accelerator based on a scalable microelectromechanical-system RF-structure |
authorStr |
Persaud, A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129509175 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0034-6748 |
topic_title |
530 620 DE-600 A compact linear accelerator based on a scalable microelectromechanical-system RF-structure Physics Accelerator Physics |
topic |
ddc 530 misc Physics misc Accelerator Physics |
topic_unstemmed |
ddc 530 misc Physics misc Accelerator Physics |
topic_browse |
ddc 530 misc Physics misc Accelerator Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
q j qj e f ef p a s pa pas w l w wl wlw t s ts a l al k b v kb kbv s a sa d a h da dah |
hierarchy_parent_title |
Review of scientific instruments |
hierarchy_parent_id |
129509175 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Review of scientific instruments |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 |
title |
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure |
ctrlnum |
(DE-627)OLC1994114703 (DE-599)GBVOLC1994114703 (PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750 (KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect |
title_full |
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure |
author_sort |
Persaud, A |
journal |
Review of scientific instruments |
journalStr |
Review of scientific instruments |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Persaud, A |
container_volume |
88 |
class |
530 620 DE-600 |
format_se |
Aufsätze |
author-letter |
Persaud, A |
doi_str_mv |
10.1063/1.4984969 |
dewey-full |
530 620 |
title_sort |
compact linear accelerator based on a scalable microelectromechanical-system rf-structure |
title_auth |
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure |
abstract |
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. |
abstractGer |
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. |
abstract_unstemmed |
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 |
container_issue |
6 |
title_short |
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure |
url |
http://dx.doi.org/10.1063/1.4984969 http://arxiv.org/abs/1610.09723 |
remote_bool |
false |
author2 |
Ji, Q Feinberg, E Seidl, P. A Waldron, W. L Schenkel, T Lal, A Vinayakumar, K. B Ardanuc, S Hammer, D. A |
author2Str |
Ji, Q Feinberg, E Seidl, P. A Waldron, W. L Schenkel, T Lal, A Vinayakumar, K. B Ardanuc, S Hammer, D. A |
ppnlink |
129509175 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1063/1.4984969 |
up_date |
2024-07-03T16:34:30.571Z |
_version_ |
1803576379255554048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994114703</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715052327.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4984969</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994114703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994114703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1090-37a478296b32431426cca5aa1519eebadafdf8be8b734652bd28fc27114e6f750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0016010520170000088000600000compactlinearacceleratorbasedonascalablemicroelect</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Persaud, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A compact linear accelerator based on a scalable microelectromechanical-system RF-structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Q</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feinberg, E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seidl, P. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Waldron, W. L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schenkel, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lal, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vinayakumar, K. B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ardanuc, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hammer, D. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Review of scientific instruments</subfield><subfield code="d">Melville, NY : AIP, 1930</subfield><subfield code="g">88(2017), 6</subfield><subfield code="w">(DE-627)129509175</subfield><subfield code="w">(DE-600)209865-9</subfield><subfield code="w">(DE-576)014915782</subfield><subfield code="x">0034-6748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4984969</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4984969</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1610.09723</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield></datafield></record></collection>
|
score |
7.398781 |