Natural variations of tropical width and recent trends
The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and wa...
Ausführliche Beschreibung
Autor*in: |
Mantsis, Damianos F [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
Tropical circulation variations |
---|
Übergeordnetes Werk: |
Enthalten in: Geophysical research letters - Washington, DC : Union, 1974, 44(2017), 8, Seite 3825-3832 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2017 ; number:8 ; pages:3825-3832 |
Links: |
---|
DOI / URN: |
10.1002/2016GL072097 |
---|
Katalog-ID: |
OLC1994201665 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1994201665 | ||
003 | DE-627 | ||
005 | 20220223170710.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2016GL072097 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC1994201665 | ||
035 | |a (DE-599)GBVOLC1994201665 | ||
035 | |a (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 | ||
035 | |a (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Mantsis, Damianos F |e verfasserin |4 aut | |
245 | 1 | 0 | |a Natural variations of tropical width and recent trends |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role | ||
540 | |a Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a tropical expansion | |
650 | 4 | |a Sea surface | |
650 | 4 | |a Climate models | |
650 | 4 | |a Climate | |
650 | 4 | |a La Nina | |
650 | 4 | |a Climate change | |
650 | 4 | |a Temperature | |
650 | 4 | |a Satellites | |
650 | 4 | |a Surface temperature | |
650 | 4 | |a Tropical circulation variations | |
650 | 4 | |a Ocean temperature | |
650 | 4 | |a El Nino | |
650 | 4 | |a El Nino-Southern Oscillation event | |
650 | 4 | |a Ocean-atmosphere system | |
650 | 4 | |a Radiations | |
650 | 4 | |a Meteorology | |
650 | 4 | |a Sea surface temperatures | |
650 | 4 | |a Trends | |
650 | 4 | |a El Nino phenomena | |
700 | 1 | |a Sherwood, Steven |4 oth | |
700 | 1 | |a Allen, Robert |4 oth | |
700 | 1 | |a Shi, Lei |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geophysical research letters |d Washington, DC : Union, 1974 |g 44(2017), 8, Seite 3825-3832 |w (DE-627)129095109 |w (DE-600)7403-2 |w (DE-576)01443122X |x 0094-8276 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2017 |g number:8 |g pages:3825-3832 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2016GL072097 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1901449992 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 44 |j 2017 |e 8 |h 3825-3832 |
author_variant |
d f m df dfm |
---|---|
matchkey_str |
article:00948276:2017----::auavrainotoiawdh |
hierarchy_sort_str |
2017 |
bklnumber |
38.70 |
publishDate |
2017 |
allfields |
10.1002/2016GL072097 doi PQ20170901 (DE-627)OLC1994201665 (DE-599)GBVOLC1994201665 (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Mantsis, Damianos F verfasserin aut Natural variations of tropical width and recent trends 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena Sherwood, Steven oth Allen, Robert oth Shi, Lei oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 8, Seite 3825-3832 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:8 pages:3825-3832 http://dx.doi.org/10.1002/2016GL072097 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract https://search.proquest.com/docview/1901449992 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 8 3825-3832 |
spelling |
10.1002/2016GL072097 doi PQ20170901 (DE-627)OLC1994201665 (DE-599)GBVOLC1994201665 (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Mantsis, Damianos F verfasserin aut Natural variations of tropical width and recent trends 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena Sherwood, Steven oth Allen, Robert oth Shi, Lei oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 8, Seite 3825-3832 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:8 pages:3825-3832 http://dx.doi.org/10.1002/2016GL072097 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract https://search.proquest.com/docview/1901449992 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 8 3825-3832 |
allfields_unstemmed |
10.1002/2016GL072097 doi PQ20170901 (DE-627)OLC1994201665 (DE-599)GBVOLC1994201665 (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Mantsis, Damianos F verfasserin aut Natural variations of tropical width and recent trends 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena Sherwood, Steven oth Allen, Robert oth Shi, Lei oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 8, Seite 3825-3832 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:8 pages:3825-3832 http://dx.doi.org/10.1002/2016GL072097 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract https://search.proquest.com/docview/1901449992 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 8 3825-3832 |
allfieldsGer |
10.1002/2016GL072097 doi PQ20170901 (DE-627)OLC1994201665 (DE-599)GBVOLC1994201665 (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Mantsis, Damianos F verfasserin aut Natural variations of tropical width and recent trends 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena Sherwood, Steven oth Allen, Robert oth Shi, Lei oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 8, Seite 3825-3832 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:8 pages:3825-3832 http://dx.doi.org/10.1002/2016GL072097 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract https://search.proquest.com/docview/1901449992 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 8 3825-3832 |
allfieldsSound |
10.1002/2016GL072097 doi PQ20170901 (DE-627)OLC1994201665 (DE-599)GBVOLC1994201665 (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Mantsis, Damianos F verfasserin aut Natural variations of tropical width and recent trends 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena Sherwood, Steven oth Allen, Robert oth Shi, Lei oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 8, Seite 3825-3832 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:8 pages:3825-3832 http://dx.doi.org/10.1002/2016GL072097 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract https://search.proquest.com/docview/1901449992 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 8 3825-3832 |
language |
English |
source |
Enthalten in Geophysical research letters 44(2017), 8, Seite 3825-3832 volume:44 year:2017 number:8 pages:3825-3832 |
sourceStr |
Enthalten in Geophysical research letters 44(2017), 8, Seite 3825-3832 volume:44 year:2017 number:8 pages:3825-3832 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geophysical research letters |
authorswithroles_txt_mv |
Mantsis, Damianos F @@aut@@ Sherwood, Steven @@oth@@ Allen, Robert @@oth@@ Shi, Lei @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129095109 |
dewey-sort |
3550 |
id |
OLC1994201665 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994201665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170710.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016GL072097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994201665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994201665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mantsis, Damianos F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural variations of tropical width and recent trends</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tropical expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">La Nina</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical circulation variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino-Southern Oscillation event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean-atmosphere system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino phenomena</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sherwood, Steven</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Allen, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Lei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">44(2017), 8, Seite 3825-3832</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:3825-3832</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016GL072097</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1901449992</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">3825-3832</subfield></datafield></record></collection>
|
author |
Mantsis, Damianos F |
spellingShingle |
Mantsis, Damianos F ddc 550 bkl 38.70 misc tropical expansion misc Sea surface misc Climate models misc Climate misc La Nina misc Climate change misc Temperature misc Satellites misc Surface temperature misc Tropical circulation variations misc Ocean temperature misc El Nino misc El Nino-Southern Oscillation event misc Ocean-atmosphere system misc Radiations misc Meteorology misc Sea surface temperatures misc Trends misc El Nino phenomena Natural variations of tropical width and recent trends |
authorStr |
Mantsis, Damianos F |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095109 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0094-8276 |
topic_title |
550 DNB 38.70 bkl Natural variations of tropical width and recent trends tropical expansion Sea surface Climate models Climate La Nina Climate change Temperature Satellites Surface temperature Tropical circulation variations Ocean temperature El Nino El Nino-Southern Oscillation event Ocean-atmosphere system Radiations Meteorology Sea surface temperatures Trends El Nino phenomena |
topic |
ddc 550 bkl 38.70 misc tropical expansion misc Sea surface misc Climate models misc Climate misc La Nina misc Climate change misc Temperature misc Satellites misc Surface temperature misc Tropical circulation variations misc Ocean temperature misc El Nino misc El Nino-Southern Oscillation event misc Ocean-atmosphere system misc Radiations misc Meteorology misc Sea surface temperatures misc Trends misc El Nino phenomena |
topic_unstemmed |
ddc 550 bkl 38.70 misc tropical expansion misc Sea surface misc Climate models misc Climate misc La Nina misc Climate change misc Temperature misc Satellites misc Surface temperature misc Tropical circulation variations misc Ocean temperature misc El Nino misc El Nino-Southern Oscillation event misc Ocean-atmosphere system misc Radiations misc Meteorology misc Sea surface temperatures misc Trends misc El Nino phenomena |
topic_browse |
ddc 550 bkl 38.70 misc tropical expansion misc Sea surface misc Climate models misc Climate misc La Nina misc Climate change misc Temperature misc Satellites misc Surface temperature misc Tropical circulation variations misc Ocean temperature misc El Nino misc El Nino-Southern Oscillation event misc Ocean-atmosphere system misc Radiations misc Meteorology misc Sea surface temperatures misc Trends misc El Nino phenomena |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s s ss r a ra l s ls |
hierarchy_parent_title |
Geophysical research letters |
hierarchy_parent_id |
129095109 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geophysical research letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X |
title |
Natural variations of tropical width and recent trends |
ctrlnum |
(DE-627)OLC1994201665 (DE-599)GBVOLC1994201665 (PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40 (KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends |
title_full |
Natural variations of tropical width and recent trends |
author_sort |
Mantsis, Damianos F |
journal |
Geophysical research letters |
journalStr |
Geophysical research letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3825 |
author_browse |
Mantsis, Damianos F |
container_volume |
44 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Mantsis, Damianos F |
doi_str_mv |
10.1002/2016GL072097 |
dewey-full |
550 |
title_sort |
natural variations of tropical width and recent trends |
title_auth |
Natural variations of tropical width and recent trends |
abstract |
The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role |
abstractGer |
The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role |
abstract_unstemmed |
The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 |
container_issue |
8 |
title_short |
Natural variations of tropical width and recent trends |
url |
http://dx.doi.org/10.1002/2016GL072097 http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract https://search.proquest.com/docview/1901449992 |
remote_bool |
false |
author2 |
Sherwood, Steven Allen, Robert Shi, Lei |
author2Str |
Sherwood, Steven Allen, Robert Shi, Lei |
ppnlink |
129095109 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/2016GL072097 |
up_date |
2024-07-03T16:54:01.716Z |
_version_ |
1803577607294287872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994201665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170710.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016GL072097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994201665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994201665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1364-ba6ef4f5ecdfa16946d0667f31a5ff8d2cd187b7233f2dc33a4b34cb87a7bdc40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820170000044000803825naturalvariationsoftropicalwidthandrecenttrends</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mantsis, Damianos F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural variations of tropical width and recent trends</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The temporal evolution of the tropical width since 1979 is investigated in observations and models by using metrics based on outgoing radiation, 6.7 µm brightness temperature, and atmospheric reanalysis. The maximum 20 year widening as seen in radiation by satellites occurred during 1993–2012 and was associated with a global sea surface temperature (SST) change that resembles the El Niño–Southern Oscillation/Pacific Decadal Oscillation in the Pacific region. Idealized experiments with Community Atmospheric Model version 5 reveal that Tropical Pacific SST pattern largely accounts for the widening. A number of Coupled Model Intercomparison Project Phase 5 coupled models can simulate, without any type of forcing, this satellite‐inferred tropical widening and its associated Pacific SST pattern. While model‐simulated widenings are consistent for all metrics, the two reanalysis‐based widenings are inconsistent internally and with the satellite‐based and model widenings. Our results reinforce suggestions that observed widenings can be explained by internal variability as captured by climate models, though this depends on whether reanalysis trends are regarded as reliable. Tropical expansion is largely attributed to natural variability CMIP5 climate models can reproduce part of this tropical expansion without any type of forcing This tropical expansion is largely forced by SSTs in the Tropical Pacific with SSTs in the Indian Ocean playing a secondary role</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tropical expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">La Nina</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical circulation variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino-Southern Oscillation event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean-atmosphere system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trends</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino phenomena</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sherwood, Steven</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Allen, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Lei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">44(2017), 8, Seite 3825-3832</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:3825-3832</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016GL072097</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016GL072097/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1901449992</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">8</subfield><subfield code="h">3825-3832</subfield></datafield></record></collection>
|
score |
7.4018183 |