A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas
We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are o...
Ausführliche Beschreibung
Autor*in: |
Zhang, Chenglong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of computational physics - Amsterdam : Elsevier, 1966, (2016) |
---|---|
Übergeordnetes Werk: |
year:2016 |
Links: |
---|
DOI / URN: |
10.1016/j.jcp.2017.03.046 |
---|
Katalog-ID: |
OLC1994268980 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1994268980 | ||
003 | DE-627 | ||
005 | 20220221174643.0 | ||
007 | tu | ||
008 | 170721s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcp.2017.03.046 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1994268980 | ||
035 | |a (DE-599)GBVOLC1994268980 | ||
035 | |a (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 | ||
035 | |a (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |a 000 |q DE-600 |
100 | 1 | |a Zhang, Chenglong |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. | ||
650 | 4 | |a Physics | |
650 | 4 | |a Computational Physics | |
700 | 1 | |a Gamba, Irene M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of computational physics |d Amsterdam : Elsevier, 1966 |g (2016) |w (DE-627)129359084 |w (DE-600)160508-2 |w (DE-576)014731401 |x 0021-9991 |7 nnns |
773 | 1 | 8 | |g year:2016 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.jcp.2017.03.046 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1605.05787 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |j 2016 |
author_variant |
c z cz |
---|---|
matchkey_str |
article:00219991:2016----::cnevtvshmfrlsvosolnamdln |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1016/j.jcp.2017.03.046 doi PQ20171125 (DE-627)OLC1994268980 (DE-599)GBVOLC1994268980 (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco DE-627 ger DE-627 rakwb eng 530 510 000 DE-600 Zhang, Chenglong verfasserin aut A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. Physics Computational Physics Gamba, Irene M oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 (2016) (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns year:2016 http://dx.doi.org/10.1016/j.jcp.2017.03.046 Volltext http://arxiv.org/abs/1605.05787 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_70 AR 2016 |
spelling |
10.1016/j.jcp.2017.03.046 doi PQ20171125 (DE-627)OLC1994268980 (DE-599)GBVOLC1994268980 (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco DE-627 ger DE-627 rakwb eng 530 510 000 DE-600 Zhang, Chenglong verfasserin aut A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. Physics Computational Physics Gamba, Irene M oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 (2016) (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns year:2016 http://dx.doi.org/10.1016/j.jcp.2017.03.046 Volltext http://arxiv.org/abs/1605.05787 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_70 AR 2016 |
allfields_unstemmed |
10.1016/j.jcp.2017.03.046 doi PQ20171125 (DE-627)OLC1994268980 (DE-599)GBVOLC1994268980 (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco DE-627 ger DE-627 rakwb eng 530 510 000 DE-600 Zhang, Chenglong verfasserin aut A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. Physics Computational Physics Gamba, Irene M oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 (2016) (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns year:2016 http://dx.doi.org/10.1016/j.jcp.2017.03.046 Volltext http://arxiv.org/abs/1605.05787 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_70 AR 2016 |
allfieldsGer |
10.1016/j.jcp.2017.03.046 doi PQ20171125 (DE-627)OLC1994268980 (DE-599)GBVOLC1994268980 (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco DE-627 ger DE-627 rakwb eng 530 510 000 DE-600 Zhang, Chenglong verfasserin aut A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. Physics Computational Physics Gamba, Irene M oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 (2016) (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns year:2016 http://dx.doi.org/10.1016/j.jcp.2017.03.046 Volltext http://arxiv.org/abs/1605.05787 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_70 AR 2016 |
allfieldsSound |
10.1016/j.jcp.2017.03.046 doi PQ20171125 (DE-627)OLC1994268980 (DE-599)GBVOLC1994268980 (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco DE-627 ger DE-627 rakwb eng 530 510 000 DE-600 Zhang, Chenglong verfasserin aut A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. Physics Computational Physics Gamba, Irene M oth Enthalten in Journal of computational physics Amsterdam : Elsevier, 1966 (2016) (DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 0021-9991 nnns year:2016 http://dx.doi.org/10.1016/j.jcp.2017.03.046 Volltext http://arxiv.org/abs/1605.05787 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_70 AR 2016 |
language |
English |
source |
Enthalten in Journal of computational physics (2016) year:2016 |
sourceStr |
Enthalten in Journal of computational physics (2016) year:2016 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics Computational Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of computational physics |
authorswithroles_txt_mv |
Zhang, Chenglong @@aut@@ Gamba, Irene M @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129359084 |
dewey-sort |
3530 |
id |
OLC1994268980 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994268980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221174643.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcp.2017.03.046</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994268980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994268980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Chenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gamba, Irene M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational physics</subfield><subfield code="d">Amsterdam : Elsevier, 1966</subfield><subfield code="g">(2016)</subfield><subfield code="w">(DE-627)129359084</subfield><subfield code="w">(DE-600)160508-2</subfield><subfield code="w">(DE-576)014731401</subfield><subfield code="x">0021-9991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jcp.2017.03.046</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1605.05787</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield></datafield></record></collection>
|
author |
Zhang, Chenglong |
spellingShingle |
Zhang, Chenglong ddc 530 misc Physics misc Computational Physics A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas |
authorStr |
Zhang, Chenglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129359084 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-9991 |
topic_title |
530 510 000 DE-600 A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas Physics Computational Physics |
topic |
ddc 530 misc Physics misc Computational Physics |
topic_unstemmed |
ddc 530 misc Physics misc Computational Physics |
topic_browse |
ddc 530 misc Physics misc Computational Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
i m g im img |
hierarchy_parent_title |
Journal of computational physics |
hierarchy_parent_id |
129359084 |
dewey-tens |
530 - Physics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of computational physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129359084 (DE-600)160508-2 (DE-576)014731401 |
title |
A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas |
ctrlnum |
(DE-627)OLC1994268980 (DE-599)GBVOLC1994268980 (PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0 (KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco |
title_full |
A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas |
author_sort |
Zhang, Chenglong |
journal |
Journal of computational physics |
journalStr |
Journal of computational physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Zhang, Chenglong |
class |
530 510 000 DE-600 |
format_se |
Aufsätze |
author-letter |
Zhang, Chenglong |
doi_str_mv |
10.1016/j.jcp.2017.03.046 |
dewey-full |
530 510 000 |
title_sort |
conservative scheme for vlasov poisson landau modeling collisional plasmas |
title_auth |
A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas |
abstract |
We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. |
abstractGer |
We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. |
abstract_unstemmed |
We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_70 |
title_short |
A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas |
url |
http://dx.doi.org/10.1016/j.jcp.2017.03.046 http://arxiv.org/abs/1605.05787 |
remote_bool |
false |
author2 |
Gamba, Irene M |
author2Str |
Gamba, Irene M |
ppnlink |
129359084 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jcp.2017.03.046 |
up_date |
2024-07-03T17:09:20.264Z |
_version_ |
1803578570456432640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994268980</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221174643.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcp.2017.03.046</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994268980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994268980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a742-984fd1128ea72dc6510043924d3c1b695219d78800f6785a97010c639390c9d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0034221120160000000000000000conservativeschemeforvlasovpoissonlandaumodelingco</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Chenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Conservative Scheme for Vlasov Poisson Landau modeling collisional plasmas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have developed a deterministic conservative solver for the inhomogeneous Fokker-Planck-Landau equation coupled with the Poisson equation, which is a {classical mean-field} primary model for collisional plasmas. Two subproblems, i.e. the Vlasov-Poisson problem and homogeneous Landau problem, are obtained through time-splitting methods, and treated separately by the Runge-Kutta Discontinuous Galerkin method and a conservative spectral method, respectively. To ensure conservation when projecting between the two different computing grids, a special conservation routine is designed to link the solutions of these two subproblems. This conservation routine accurately enforces conservation of moments in Fourier space. The entire numerical scheme is implemented with parallelization with hybrid MPI and OpenMP. Numerical experiments are provided to study linear and nonlinear Landau Damping problems and two-stream flow problem as well.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gamba, Irene M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of computational physics</subfield><subfield code="d">Amsterdam : Elsevier, 1966</subfield><subfield code="g">(2016)</subfield><subfield code="w">(DE-627)129359084</subfield><subfield code="w">(DE-600)160508-2</subfield><subfield code="w">(DE-576)014731401</subfield><subfield code="x">0021-9991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jcp.2017.03.046</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1605.05787</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield></datafield></record></collection>
|
score |
7.4010477 |