A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario
This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set...
Ausführliche Beschreibung
Autor*in: |
Pittolo, Alberto [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on communications - New York, NY : IEEE, 1972, 65(2017), 6, Seite 2543-2553 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2017 ; number:6 ; pages:2543-2553 |
Links: |
---|
DOI / URN: |
10.1109/TCOMM.2017.2677938 |
---|
Katalog-ID: |
OLC1994352396 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1994352396 | ||
003 | DE-627 | ||
005 | 20220221081358.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCOMM.2017.2677938 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1994352396 | ||
035 | |a (DE-599)GBVOLC1994352396 | ||
035 | |a (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 | ||
035 | |a (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a SA 5540 |q AVZ |2 rvk | ||
100 | 1 | |a Pittolo, Alberto |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. | ||
650 | 4 | |a Power line communications | |
650 | 4 | |a Load modeling | |
650 | 4 | |a PLC | |
650 | 4 | |a top-down methodology | |
650 | 4 | |a MIMO | |
650 | 4 | |a statistical model | |
650 | 4 | |a Transmission line measurements | |
650 | 4 | |a channel modeling | |
650 | 4 | |a Correlation | |
650 | 4 | |a Analytical models | |
650 | 4 | |a Channel models | |
650 | 4 | |a phenomenological approach | |
700 | 1 | |a Tonello, Andrea M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on communications |d New York, NY : IEEE, 1972 |g 65(2017), 6, Seite 2543-2553 |w (DE-627)129300624 |w (DE-600)121987-X |w (DE-576)014493063 |x 0090-6778 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2017 |g number:6 |g pages:2543-2553 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCOMM.2017.2677938 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7870625 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
936 | r | v | |a SA 5540 |
951 | |a AR | ||
952 | |d 65 |j 2017 |e 6 |h 2543-2553 |
author_variant |
a p ap |
---|---|
matchkey_str |
article:00906778:2017----::snhtcttsiammpchnemdlplet |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TCOMM.2017.2677938 doi PQ20170721 (DE-627)OLC1994352396 (DE-599)GBVOLC1994352396 (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan DE-627 ger DE-627 rakwb eng 620 DNB SA 5540 AVZ rvk Pittolo, Alberto verfasserin aut A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach Tonello, Andrea M oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 6, Seite 2543-2553 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:6 pages:2543-2553 http://dx.doi.org/10.1109/TCOMM.2017.2677938 Volltext http://ieeexplore.ieee.org/document/7870625 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 6 2543-2553 |
spelling |
10.1109/TCOMM.2017.2677938 doi PQ20170721 (DE-627)OLC1994352396 (DE-599)GBVOLC1994352396 (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan DE-627 ger DE-627 rakwb eng 620 DNB SA 5540 AVZ rvk Pittolo, Alberto verfasserin aut A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach Tonello, Andrea M oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 6, Seite 2543-2553 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:6 pages:2543-2553 http://dx.doi.org/10.1109/TCOMM.2017.2677938 Volltext http://ieeexplore.ieee.org/document/7870625 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 6 2543-2553 |
allfields_unstemmed |
10.1109/TCOMM.2017.2677938 doi PQ20170721 (DE-627)OLC1994352396 (DE-599)GBVOLC1994352396 (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan DE-627 ger DE-627 rakwb eng 620 DNB SA 5540 AVZ rvk Pittolo, Alberto verfasserin aut A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach Tonello, Andrea M oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 6, Seite 2543-2553 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:6 pages:2543-2553 http://dx.doi.org/10.1109/TCOMM.2017.2677938 Volltext http://ieeexplore.ieee.org/document/7870625 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 6 2543-2553 |
allfieldsGer |
10.1109/TCOMM.2017.2677938 doi PQ20170721 (DE-627)OLC1994352396 (DE-599)GBVOLC1994352396 (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan DE-627 ger DE-627 rakwb eng 620 DNB SA 5540 AVZ rvk Pittolo, Alberto verfasserin aut A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach Tonello, Andrea M oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 6, Seite 2543-2553 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:6 pages:2543-2553 http://dx.doi.org/10.1109/TCOMM.2017.2677938 Volltext http://ieeexplore.ieee.org/document/7870625 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 6 2543-2553 |
allfieldsSound |
10.1109/TCOMM.2017.2677938 doi PQ20170721 (DE-627)OLC1994352396 (DE-599)GBVOLC1994352396 (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan DE-627 ger DE-627 rakwb eng 620 DNB SA 5540 AVZ rvk Pittolo, Alberto verfasserin aut A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach Tonello, Andrea M oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 6, Seite 2543-2553 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:6 pages:2543-2553 http://dx.doi.org/10.1109/TCOMM.2017.2677938 Volltext http://ieeexplore.ieee.org/document/7870625 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 6 2543-2553 |
language |
English |
source |
Enthalten in IEEE transactions on communications 65(2017), 6, Seite 2543-2553 volume:65 year:2017 number:6 pages:2543-2553 |
sourceStr |
Enthalten in IEEE transactions on communications 65(2017), 6, Seite 2543-2553 volume:65 year:2017 number:6 pages:2543-2553 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on communications |
authorswithroles_txt_mv |
Pittolo, Alberto @@aut@@ Tonello, Andrea M @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129300624 |
dewey-sort |
3620 |
id |
OLC1994352396 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994352396</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221081358.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCOMM.2017.2677938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994352396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994352396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5540</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pittolo, Alberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power line communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PLC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">top-down methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIMO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission line measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenomenological approach</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tonello, Andrea M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on communications</subfield><subfield code="d">New York, NY : IEEE, 1972</subfield><subfield code="g">65(2017), 6, Seite 2543-2553</subfield><subfield code="w">(DE-627)129300624</subfield><subfield code="w">(DE-600)121987-X</subfield><subfield code="w">(DE-576)014493063</subfield><subfield code="x">0090-6778</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2543-2553</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCOMM.2017.2677938</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7870625</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5540</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">2543-2553</subfield></datafield></record></collection>
|
author |
Pittolo, Alberto |
spellingShingle |
Pittolo, Alberto ddc 620 rvk SA 5540 misc Power line communications misc Load modeling misc PLC misc top-down methodology misc MIMO misc statistical model misc Transmission line measurements misc channel modeling misc Correlation misc Analytical models misc Channel models misc phenomenological approach A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario |
authorStr |
Pittolo, Alberto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129300624 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0090-6778 |
topic_title |
620 DNB SA 5540 AVZ rvk A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario Power line communications Load modeling PLC top-down methodology MIMO statistical model Transmission line measurements channel modeling Correlation Analytical models Channel models phenomenological approach |
topic |
ddc 620 rvk SA 5540 misc Power line communications misc Load modeling misc PLC misc top-down methodology misc MIMO misc statistical model misc Transmission line measurements misc channel modeling misc Correlation misc Analytical models misc Channel models misc phenomenological approach |
topic_unstemmed |
ddc 620 rvk SA 5540 misc Power line communications misc Load modeling misc PLC misc top-down methodology misc MIMO misc statistical model misc Transmission line measurements misc channel modeling misc Correlation misc Analytical models misc Channel models misc phenomenological approach |
topic_browse |
ddc 620 rvk SA 5540 misc Power line communications misc Load modeling misc PLC misc top-down methodology misc MIMO misc statistical model misc Transmission line measurements misc channel modeling misc Correlation misc Analytical models misc Channel models misc phenomenological approach |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a m t am amt |
hierarchy_parent_title |
IEEE transactions on communications |
hierarchy_parent_id |
129300624 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129300624 (DE-600)121987-X (DE-576)014493063 |
title |
A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario |
ctrlnum |
(DE-627)OLC1994352396 (DE-599)GBVOLC1994352396 (PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850 (KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan |
title_full |
A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario |
author_sort |
Pittolo, Alberto |
journal |
IEEE transactions on communications |
journalStr |
IEEE transactions on communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2543 |
author_browse |
Pittolo, Alberto |
container_volume |
65 |
class |
620 DNB SA 5540 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Pittolo, Alberto |
doi_str_mv |
10.1109/TCOMM.2017.2677938 |
dewey-full |
620 |
title_sort |
synthetic statistical mimo plc channel model applied to an in-home scenario |
title_auth |
A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario |
abstract |
This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. |
abstractGer |
This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. |
abstract_unstemmed |
This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 |
container_issue |
6 |
title_short |
A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario |
url |
http://dx.doi.org/10.1109/TCOMM.2017.2677938 http://ieeexplore.ieee.org/document/7870625 |
remote_bool |
false |
author2 |
Tonello, Andrea M |
author2Str |
Tonello, Andrea M |
ppnlink |
129300624 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TCOMM.2017.2677938 |
up_date |
2024-07-03T17:30:16.226Z |
_version_ |
1803579887429091328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994352396</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221081358.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCOMM.2017.2677938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994352396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994352396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i659-782d68e0a6646a78dddfec337cc7fd8590e38c6720b90cf37d4d7e2478575850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0043613520170000065000602543syntheticstatisticalmimoplcchannelmodelappliedtoan</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5540</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pittolo, Alberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a synthetic statistical top-down MIMO power line communications channel model based on a pure phenomenological approach. The basic idea consists of directly synthesizing the experimental channel statistical properties to obtain an extremely compact model that requires a small set of parameters. The model is derived from the analysis of the in-home <inline-formula> <tex-math notation="LaTeX">2\times 3 </tex-math></inline-formula> MIMO PLC channel data set obtained by the European Telecommunications Standards Institute specialist task force 410 measurement campaign in the band 1.8-100 MHz. The challenge of modeling the channel statistical correlation, exhibited among the frequencies and between the MIMO modes, in compact form is tackled and it is shown that a small set of parameters can be used to reconstruct such a correlation behavior. The model is validated and compared with the measured channels, showing a good agreement in terms of average channel gain, root-mean-square delay spread, coherence bandwidth, and channel capacity distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power line communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Load modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PLC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">top-down methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MIMO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission line measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">channel modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Channel models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phenomenological approach</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tonello, Andrea M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on communications</subfield><subfield code="d">New York, NY : IEEE, 1972</subfield><subfield code="g">65(2017), 6, Seite 2543-2553</subfield><subfield code="w">(DE-627)129300624</subfield><subfield code="w">(DE-600)121987-X</subfield><subfield code="w">(DE-576)014493063</subfield><subfield code="x">0090-6778</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2543-2553</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCOMM.2017.2677938</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7870625</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5540</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="h">2543-2553</subfield></datafield></record></collection>
|
score |
7.4013834 |