Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology
The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies...
Ausführliche Beschreibung
Autor*in: |
Karmacharya, J [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Royal Meteorological Society |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: International journal of climatology - Chichester [u.a.] : Wiley, 1989, 37(2017), 9, Seite 3630-3643 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2017 ; number:9 ; pages:3630-3643 |
Links: |
---|
DOI / URN: |
10.1002/joc.4944 |
---|
Katalog-ID: |
OLC1994772670 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1994772670 | ||
003 | DE-627 | ||
005 | 20230715055023.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/joc.4944 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1994772670 | ||
035 | |a (DE-599)GBVOLC1994772670 | ||
035 | |a (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 | ||
035 | |a (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a RA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Karmacharya, J |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. | ||
540 | |a Nutzungsrecht: © 2016 Royal Meteorological Society | ||
650 | 4 | |a regional climate model | |
650 | 4 | |a Himalaya | |
650 | 4 | |a added value | |
650 | 4 | |a monsoon climatology | |
650 | 4 | |a South Asian summer monsoon | |
650 | 4 | |a Sea surface | |
650 | 4 | |a Geographical distribution | |
650 | 4 | |a Global climate models | |
650 | 4 | |a Variability | |
650 | 4 | |a Wet days | |
650 | 4 | |a Rainfall | |
650 | 4 | |a Climatic changes | |
650 | 4 | |a Climate change | |
650 | 4 | |a Summer | |
650 | 4 | |a Low level | |
650 | 4 | |a Models | |
650 | 4 | |a Evaluation | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Frequency distribution | |
650 | 4 | |a Climatology | |
650 | 4 | |a Regional climate models | |
650 | 4 | |a Frequency | |
650 | 4 | |a Daily precipitation | |
650 | 4 | |a Sea surface temperatures | |
650 | 4 | |a Wind | |
650 | 4 | |a Temperature effects | |
650 | 4 | |a Atmospheric precipitations | |
650 | 4 | |a High resolution | |
650 | 4 | |a Weather | |
650 | 4 | |a Level (quantity) | |
650 | 4 | |a Summer monsoon | |
650 | 4 | |a Regional analysis | |
650 | 4 | |a Resolution | |
650 | 4 | |a Climate models | |
650 | 4 | |a Mean precipitation | |
650 | 4 | |a Climate | |
650 | 4 | |a Daily | |
650 | 4 | |a Temperature | |
650 | 4 | |a Scale (ratio) | |
650 | 4 | |a Simulation | |
650 | 4 | |a Seasonal distribution | |
650 | 4 | |a Extreme values | |
650 | 4 | |a Precipitation | |
650 | 4 | |a Orography | |
650 | 4 | |a Surface temperature | |
650 | 4 | |a Global climate | |
650 | 4 | |a Added value | |
650 | 4 | |a Scales | |
650 | 4 | |a Sea surface temperature | |
650 | 4 | |a Capacity | |
650 | 4 | |a Spatial discrimination | |
650 | 4 | |a Monsoons | |
700 | 1 | |a Jones, R |4 oth | |
700 | 1 | |a Moufouma‐Okia, W |4 oth | |
700 | 1 | |a New, M |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of climatology |d Chichester [u.a.] : Wiley, 1989 |g 37(2017), 9, Seite 3630-3643 |w (DE-627)130763128 |w (DE-600)1000947-4 |w (DE-576)023035773 |x 0899-8418 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2017 |g number:9 |g pages:3630-3643 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/joc.4944 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1915221456 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_4311 | ||
936 | r | v | |a RA 1000 |
951 | |a AR | ||
952 | |d 37 |j 2017 |e 9 |h 3630-3643 |
author_variant |
j k jk |
---|---|
matchkey_str |
article:08998418:2017----::vlainfhaddauoaiheouineinllmtmdliuainfhsu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/joc.4944 doi PQ20170721 (DE-627)OLC1994772670 (DE-599)GBVOLC1994772670 (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Karmacharya, J verfasserin aut Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. Nutzungsrecht: © 2016 Royal Meteorological Society regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons Jones, R oth Moufouma‐Okia, W oth New, M oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 9, Seite 3630-3643 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:9 pages:3630-3643 http://dx.doi.org/10.1002/joc.4944 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract https://search.proquest.com/docview/1915221456 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 9 3630-3643 |
spelling |
10.1002/joc.4944 doi PQ20170721 (DE-627)OLC1994772670 (DE-599)GBVOLC1994772670 (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Karmacharya, J verfasserin aut Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. Nutzungsrecht: © 2016 Royal Meteorological Society regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons Jones, R oth Moufouma‐Okia, W oth New, M oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 9, Seite 3630-3643 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:9 pages:3630-3643 http://dx.doi.org/10.1002/joc.4944 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract https://search.proquest.com/docview/1915221456 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 9 3630-3643 |
allfields_unstemmed |
10.1002/joc.4944 doi PQ20170721 (DE-627)OLC1994772670 (DE-599)GBVOLC1994772670 (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Karmacharya, J verfasserin aut Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. Nutzungsrecht: © 2016 Royal Meteorological Society regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons Jones, R oth Moufouma‐Okia, W oth New, M oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 9, Seite 3630-3643 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:9 pages:3630-3643 http://dx.doi.org/10.1002/joc.4944 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract https://search.proquest.com/docview/1915221456 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 9 3630-3643 |
allfieldsGer |
10.1002/joc.4944 doi PQ20170721 (DE-627)OLC1994772670 (DE-599)GBVOLC1994772670 (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Karmacharya, J verfasserin aut Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. Nutzungsrecht: © 2016 Royal Meteorological Society regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons Jones, R oth Moufouma‐Okia, W oth New, M oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 9, Seite 3630-3643 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:9 pages:3630-3643 http://dx.doi.org/10.1002/joc.4944 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract https://search.proquest.com/docview/1915221456 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 9 3630-3643 |
allfieldsSound |
10.1002/joc.4944 doi PQ20170721 (DE-627)OLC1994772670 (DE-599)GBVOLC1994772670 (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional DE-627 ger DE-627 rakwb eng 550 DE-600 RA 1000 AVZ rvk Karmacharya, J verfasserin aut Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. Nutzungsrecht: © 2016 Royal Meteorological Society regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons Jones, R oth Moufouma‐Okia, W oth New, M oth Enthalten in International journal of climatology Chichester [u.a.] : Wiley, 1989 37(2017), 9, Seite 3630-3643 (DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 0899-8418 nnns volume:37 year:2017 number:9 pages:3630-3643 http://dx.doi.org/10.1002/joc.4944 Volltext http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract https://search.proquest.com/docview/1915221456 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 RA 1000 AR 37 2017 9 3630-3643 |
language |
English |
source |
Enthalten in International journal of climatology 37(2017), 9, Seite 3630-3643 volume:37 year:2017 number:9 pages:3630-3643 |
sourceStr |
Enthalten in International journal of climatology 37(2017), 9, Seite 3630-3643 volume:37 year:2017 number:9 pages:3630-3643 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
International journal of climatology |
authorswithroles_txt_mv |
Karmacharya, J @@aut@@ Jones, R @@oth@@ Moufouma‐Okia, W @@oth@@ New, M @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130763128 |
dewey-sort |
3550 |
id |
OLC1994772670 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994772670</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715055023.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/joc.4944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994772670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994772670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karmacharya, J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regional climate model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Himalaya</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">added value</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monsoon climatology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">South Asian summer monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographical distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet days</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rainfall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climatic changes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Summer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climatology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regional climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daily precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric precipitations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weather</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level (quantity)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Summer monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daily</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale (ratio)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seasonal distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme values</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Added value</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scales</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial discrimination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monsoons</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moufouma‐Okia, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">New, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of climatology</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1989</subfield><subfield code="g">37(2017), 9, Seite 3630-3643</subfield><subfield code="w">(DE-627)130763128</subfield><subfield code="w">(DE-600)1000947-4</subfield><subfield code="w">(DE-576)023035773</subfield><subfield code="x">0899-8418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3630-3643</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/joc.4944</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1915221456</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">3630-3643</subfield></datafield></record></collection>
|
author |
Karmacharya, J |
spellingShingle |
Karmacharya, J ddc 550 rvk RA 1000 misc regional climate model misc Himalaya misc added value misc monsoon climatology misc South Asian summer monsoon misc Sea surface misc Geographical distribution misc Global climate models misc Variability misc Wet days misc Rainfall misc Climatic changes misc Climate change misc Summer misc Low level misc Models misc Evaluation misc Computer simulation misc Frequency distribution misc Climatology misc Regional climate models misc Frequency misc Daily precipitation misc Sea surface temperatures misc Wind misc Temperature effects misc Atmospheric precipitations misc High resolution misc Weather misc Level (quantity) misc Summer monsoon misc Regional analysis misc Resolution misc Climate models misc Mean precipitation misc Climate misc Daily misc Temperature misc Scale (ratio) misc Simulation misc Seasonal distribution misc Extreme values misc Precipitation misc Orography misc Surface temperature misc Global climate misc Added value misc Scales misc Sea surface temperature misc Capacity misc Spatial discrimination misc Monsoons Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology |
authorStr |
Karmacharya, J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130763128 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0899-8418 |
topic_title |
550 DE-600 RA 1000 AVZ rvk Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology regional climate model Himalaya added value monsoon climatology South Asian summer monsoon Sea surface Geographical distribution Global climate models Variability Wet days Rainfall Climatic changes Climate change Summer Low level Models Evaluation Computer simulation Frequency distribution Climatology Regional climate models Frequency Daily precipitation Sea surface temperatures Wind Temperature effects Atmospheric precipitations High resolution Weather Level (quantity) Summer monsoon Regional analysis Resolution Climate models Mean precipitation Climate Daily Temperature Scale (ratio) Simulation Seasonal distribution Extreme values Precipitation Orography Surface temperature Global climate Added value Scales Sea surface temperature Capacity Spatial discrimination Monsoons |
topic |
ddc 550 rvk RA 1000 misc regional climate model misc Himalaya misc added value misc monsoon climatology misc South Asian summer monsoon misc Sea surface misc Geographical distribution misc Global climate models misc Variability misc Wet days misc Rainfall misc Climatic changes misc Climate change misc Summer misc Low level misc Models misc Evaluation misc Computer simulation misc Frequency distribution misc Climatology misc Regional climate models misc Frequency misc Daily precipitation misc Sea surface temperatures misc Wind misc Temperature effects misc Atmospheric precipitations misc High resolution misc Weather misc Level (quantity) misc Summer monsoon misc Regional analysis misc Resolution misc Climate models misc Mean precipitation misc Climate misc Daily misc Temperature misc Scale (ratio) misc Simulation misc Seasonal distribution misc Extreme values misc Precipitation misc Orography misc Surface temperature misc Global climate misc Added value misc Scales misc Sea surface temperature misc Capacity misc Spatial discrimination misc Monsoons |
topic_unstemmed |
ddc 550 rvk RA 1000 misc regional climate model misc Himalaya misc added value misc monsoon climatology misc South Asian summer monsoon misc Sea surface misc Geographical distribution misc Global climate models misc Variability misc Wet days misc Rainfall misc Climatic changes misc Climate change misc Summer misc Low level misc Models misc Evaluation misc Computer simulation misc Frequency distribution misc Climatology misc Regional climate models misc Frequency misc Daily precipitation misc Sea surface temperatures misc Wind misc Temperature effects misc Atmospheric precipitations misc High resolution misc Weather misc Level (quantity) misc Summer monsoon misc Regional analysis misc Resolution misc Climate models misc Mean precipitation misc Climate misc Daily misc Temperature misc Scale (ratio) misc Simulation misc Seasonal distribution misc Extreme values misc Precipitation misc Orography misc Surface temperature misc Global climate misc Added value misc Scales misc Sea surface temperature misc Capacity misc Spatial discrimination misc Monsoons |
topic_browse |
ddc 550 rvk RA 1000 misc regional climate model misc Himalaya misc added value misc monsoon climatology misc South Asian summer monsoon misc Sea surface misc Geographical distribution misc Global climate models misc Variability misc Wet days misc Rainfall misc Climatic changes misc Climate change misc Summer misc Low level misc Models misc Evaluation misc Computer simulation misc Frequency distribution misc Climatology misc Regional climate models misc Frequency misc Daily precipitation misc Sea surface temperatures misc Wind misc Temperature effects misc Atmospheric precipitations misc High resolution misc Weather misc Level (quantity) misc Summer monsoon misc Regional analysis misc Resolution misc Climate models misc Mean precipitation misc Climate misc Daily misc Temperature misc Scale (ratio) misc Simulation misc Seasonal distribution misc Extreme values misc Precipitation misc Orography misc Surface temperature misc Global climate misc Added value misc Scales misc Sea surface temperature misc Capacity misc Spatial discrimination misc Monsoons |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r j rj w m wm m n mn |
hierarchy_parent_title |
International journal of climatology |
hierarchy_parent_id |
130763128 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
International journal of climatology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130763128 (DE-600)1000947-4 (DE-576)023035773 |
title |
Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology |
ctrlnum |
(DE-627)OLC1994772670 (DE-599)GBVOLC1994772670 (PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163 (KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional |
title_full |
Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology |
author_sort |
Karmacharya, J |
journal |
International journal of climatology |
journalStr |
International journal of climatology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3630 |
author_browse |
Karmacharya, J |
container_volume |
37 |
class |
550 DE-600 RA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Karmacharya, J |
doi_str_mv |
10.1002/joc.4944 |
dewey-full |
550 |
title_sort |
evaluation of the added value of a high‐resolution regional climate model simulation of the south asian summer monsoon climatology |
title_auth |
Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology |
abstract |
The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. |
abstractGer |
The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. |
abstract_unstemmed |
The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_22 GBV_ILN_4311 |
container_issue |
9 |
title_short |
Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology |
url |
http://dx.doi.org/10.1002/joc.4944 http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract https://search.proquest.com/docview/1915221456 |
remote_bool |
false |
author2 |
Jones, R Moufouma‐Okia, W New, M |
author2Str |
Jones, R Moufouma‐Okia, W New, M |
ppnlink |
130763128 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/joc.4944 |
up_date |
2024-07-03T19:10:47.948Z |
_version_ |
1803586212150116352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994772670</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715055023.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/joc.4944</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994772670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994772670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1194-8af8fc720610b078b76cde6b903ea7bec76d5dc6d592b4091c6ccf90c6023e163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0104704320170000037000903630evaluationoftheaddedvalueofahighresolutionregional</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karmacharya, J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of the added value of a high‐resolution regional climate model simulation of the South Asian summer monsoon climatology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The South Asian summer monsoon ( SASM ) is a continental scale weather phenomenon, which fluctuates at a range of temporal and spatial scales. Although majority of global climate models are broadly able to simulate the large scale characteristics of the SASM , they generally have major deficiencies such as constraints in reproducing observed mean precipitation. It is generally anticipated that higher resolution regional climate models ( RCMs ) would be able to simulate an improved mean state owing to their capacity to better simulate fine temporal and spatial scale features and variability. Here, we analyse SASM simulations using a contemporary Hadley Centre RCM , forced by ERA ‐Interim reanalysis and observed sea surface temperature, at medium (0.44°) and high (0.11°) horizontal resolutions. Evaluation of the results show that, compared to the medium resolution RCM , the high resolution RCM is able to better resolve the interaction of the low level monsoon flow with the Himalayan orography leading to added value in simulating many aspects of SASM precipitation such as the seasonal mean, relative frequency distribution of daily precipitation, and various metrics of precipitation extremes. In contrast to many previous studies, maximum added value is note along the Indo‐Gangetic plain rather than over the complex Himalayas, and the added values of up to 5 mm day −1 and 50 days are noted for mean precipitation and number of wet days, respectively over the region. Similarly, added values of up to 15 and 3 mm day −1 are noted for 95th percentile of daily precipitation and simple daily intensity index, respectively over central India and the Himalayan range. These results suggest that higher resolution RCMs have the potential to add more value when downscaling global climate model climate change projections.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regional climate model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Himalaya</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">added value</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monsoon climatology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">South Asian summer monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographical distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet days</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rainfall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climatic changes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Summer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climatology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regional climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daily precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric precipitations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weather</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level (quantity)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Summer monsoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daily</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale (ratio)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seasonal distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme values</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Added value</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scales</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sea surface temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Capacity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial discrimination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monsoons</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moufouma‐Okia, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">New, M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of climatology</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1989</subfield><subfield code="g">37(2017), 9, Seite 3630-3643</subfield><subfield code="w">(DE-627)130763128</subfield><subfield code="w">(DE-600)1000947-4</subfield><subfield code="w">(DE-576)023035773</subfield><subfield code="x">0899-8418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:3630-3643</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/joc.4944</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/joc.4944/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1915221456</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">3630-3643</subfield></datafield></record></collection>
|
score |
7.398796 |