Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition
Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth du...
Ausführliche Beschreibung
Autor*in: |
Wen, Yu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Aerosol science and technology - Philadelphia, Pa. : Taylor & Francis, 1982, 51(2017), 7, Seite 845 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2017 ; number:7 ; pages:845 |
Links: |
---|
DOI / URN: |
10.1080/02786826.2017.1307939 |
---|
Katalog-ID: |
OLC1994870230 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1994870230 | ||
003 | DE-627 | ||
005 | 20230510081913.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/02786826.2017.1307939 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1994870230 | ||
035 | |a (DE-599)GBVOLC1994870230 | ||
035 | |a (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 | ||
035 | |a (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 660 |q DNB |
084 | |a 58.00 |2 bkl | ||
100 | 1 | |a Wen, Yu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research | ||
540 | |a Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 | ||
650 | 4 | |a Nicole Riemer | |
650 | 4 | |a Particle size | |
650 | 4 | |a Synthesis (chemistry) | |
650 | 4 | |a Silicon | |
650 | 4 | |a Aerosols | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Thermodynamic properties | |
650 | 4 | |a Accuracy | |
650 | 4 | |a Nanoparticles | |
650 | 4 | |a Aerosol research | |
650 | 4 | |a Condensates | |
650 | 4 | |a Silicon nitride | |
650 | 4 | |a Deposition | |
650 | 4 | |a Condensation | |
650 | 4 | |a Predictions | |
650 | 4 | |a Chemical vapor deposition | |
650 | 4 | |a Nanostructure | |
650 | 4 | |a Modelling | |
650 | 4 | |a Ceramics industry | |
700 | 1 | |a Xia, Dehong |4 oth | |
700 | 1 | |a Xuan, Weiwei |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Aerosol science and technology |d Philadelphia, Pa. : Taylor & Francis, 1982 |g 51(2017), 7, Seite 845 |w (DE-627)130565857 |w (DE-600)787246-X |w (DE-576)016111559 |x 0278-6826 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2017 |g number:7 |g pages:845 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/02786826.2017.1307939 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1902118846 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4313 | ||
936 | b | k | |a 58.00 |q AVZ |
951 | |a AR | ||
952 | |d 51 |j 2017 |e 7 |h 845 |
author_variant |
y w yw |
---|---|
matchkey_str |
article:02786826:2017----::oeigoprilszpeitoadehnsoslcnirdnnprilsnh |
hierarchy_sort_str |
2017 |
bklnumber |
58.00 |
publishDate |
2017 |
allfields |
10.1080/02786826.2017.1307939 doi PQ20171228 (DE-627)OLC1994870230 (DE-599)GBVOLC1994870230 (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil DE-627 ger DE-627 rakwb eng 530 660 DNB 58.00 bkl Wen, Yu verfasserin aut Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry Xia, Dehong oth Xuan, Weiwei oth Enthalten in Aerosol science and technology Philadelphia, Pa. : Taylor & Francis, 1982 51(2017), 7, Seite 845 (DE-627)130565857 (DE-600)787246-X (DE-576)016111559 0278-6826 nnns volume:51 year:2017 number:7 pages:845 http://dx.doi.org/10.1080/02786826.2017.1307939 Volltext http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 https://search.proquest.com/docview/1902118846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_32 GBV_ILN_70 GBV_ILN_4313 58.00 AVZ AR 51 2017 7 845 |
spelling |
10.1080/02786826.2017.1307939 doi PQ20171228 (DE-627)OLC1994870230 (DE-599)GBVOLC1994870230 (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil DE-627 ger DE-627 rakwb eng 530 660 DNB 58.00 bkl Wen, Yu verfasserin aut Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry Xia, Dehong oth Xuan, Weiwei oth Enthalten in Aerosol science and technology Philadelphia, Pa. : Taylor & Francis, 1982 51(2017), 7, Seite 845 (DE-627)130565857 (DE-600)787246-X (DE-576)016111559 0278-6826 nnns volume:51 year:2017 number:7 pages:845 http://dx.doi.org/10.1080/02786826.2017.1307939 Volltext http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 https://search.proquest.com/docview/1902118846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_32 GBV_ILN_70 GBV_ILN_4313 58.00 AVZ AR 51 2017 7 845 |
allfields_unstemmed |
10.1080/02786826.2017.1307939 doi PQ20171228 (DE-627)OLC1994870230 (DE-599)GBVOLC1994870230 (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil DE-627 ger DE-627 rakwb eng 530 660 DNB 58.00 bkl Wen, Yu verfasserin aut Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry Xia, Dehong oth Xuan, Weiwei oth Enthalten in Aerosol science and technology Philadelphia, Pa. : Taylor & Francis, 1982 51(2017), 7, Seite 845 (DE-627)130565857 (DE-600)787246-X (DE-576)016111559 0278-6826 nnns volume:51 year:2017 number:7 pages:845 http://dx.doi.org/10.1080/02786826.2017.1307939 Volltext http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 https://search.proquest.com/docview/1902118846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_32 GBV_ILN_70 GBV_ILN_4313 58.00 AVZ AR 51 2017 7 845 |
allfieldsGer |
10.1080/02786826.2017.1307939 doi PQ20171228 (DE-627)OLC1994870230 (DE-599)GBVOLC1994870230 (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil DE-627 ger DE-627 rakwb eng 530 660 DNB 58.00 bkl Wen, Yu verfasserin aut Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry Xia, Dehong oth Xuan, Weiwei oth Enthalten in Aerosol science and technology Philadelphia, Pa. : Taylor & Francis, 1982 51(2017), 7, Seite 845 (DE-627)130565857 (DE-600)787246-X (DE-576)016111559 0278-6826 nnns volume:51 year:2017 number:7 pages:845 http://dx.doi.org/10.1080/02786826.2017.1307939 Volltext http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 https://search.proquest.com/docview/1902118846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_32 GBV_ILN_70 GBV_ILN_4313 58.00 AVZ AR 51 2017 7 845 |
allfieldsSound |
10.1080/02786826.2017.1307939 doi PQ20171228 (DE-627)OLC1994870230 (DE-599)GBVOLC1994870230 (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil DE-627 ger DE-627 rakwb eng 530 660 DNB 58.00 bkl Wen, Yu verfasserin aut Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research Nutzungsrecht: © 2017 American Association for Aerosol Research 2017 Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry Xia, Dehong oth Xuan, Weiwei oth Enthalten in Aerosol science and technology Philadelphia, Pa. : Taylor & Francis, 1982 51(2017), 7, Seite 845 (DE-627)130565857 (DE-600)787246-X (DE-576)016111559 0278-6826 nnns volume:51 year:2017 number:7 pages:845 http://dx.doi.org/10.1080/02786826.2017.1307939 Volltext http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 https://search.proquest.com/docview/1902118846 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_32 GBV_ILN_70 GBV_ILN_4313 58.00 AVZ AR 51 2017 7 845 |
language |
English |
source |
Enthalten in Aerosol science and technology 51(2017), 7, Seite 845 volume:51 year:2017 number:7 pages:845 |
sourceStr |
Enthalten in Aerosol science and technology 51(2017), 7, Seite 845 volume:51 year:2017 number:7 pages:845 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Aerosol science and technology |
authorswithroles_txt_mv |
Wen, Yu @@aut@@ Xia, Dehong @@oth@@ Xuan, Weiwei @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130565857 |
dewey-sort |
3530 |
id |
OLC1994870230 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994870230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510081913.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02786826.2017.1307939</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994870230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994870230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wen, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 American Association for Aerosol Research 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nicole Riemer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthesis (chemistry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerosols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerosol research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon nitride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical vapor deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramics industry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Dehong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Weiwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aerosol science and technology</subfield><subfield code="d">Philadelphia, Pa. : Taylor & Francis, 1982</subfield><subfield code="g">51(2017), 7, Seite 845</subfield><subfield code="w">(DE-627)130565857</subfield><subfield code="w">(DE-600)787246-X</subfield><subfield code="w">(DE-576)016111559</subfield><subfield code="x">0278-6826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:845</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02786826.2017.1307939</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1902118846</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2017</subfield><subfield code="e">7</subfield><subfield code="h">845</subfield></datafield></record></collection>
|
author |
Wen, Yu |
spellingShingle |
Wen, Yu ddc 530 bkl 58.00 misc Nicole Riemer misc Particle size misc Synthesis (chemistry) misc Silicon misc Aerosols misc Mathematical models misc Thermodynamic properties misc Accuracy misc Nanoparticles misc Aerosol research misc Condensates misc Silicon nitride misc Deposition misc Condensation misc Predictions misc Chemical vapor deposition misc Nanostructure misc Modelling misc Ceramics industry Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
authorStr |
Wen, Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130565857 |
format |
Article |
dewey-ones |
530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0278-6826 |
topic_title |
530 660 DNB 58.00 bkl Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition Nicole Riemer Particle size Synthesis (chemistry) Silicon Aerosols Mathematical models Thermodynamic properties Accuracy Nanoparticles Aerosol research Condensates Silicon nitride Deposition Condensation Predictions Chemical vapor deposition Nanostructure Modelling Ceramics industry |
topic |
ddc 530 bkl 58.00 misc Nicole Riemer misc Particle size misc Synthesis (chemistry) misc Silicon misc Aerosols misc Mathematical models misc Thermodynamic properties misc Accuracy misc Nanoparticles misc Aerosol research misc Condensates misc Silicon nitride misc Deposition misc Condensation misc Predictions misc Chemical vapor deposition misc Nanostructure misc Modelling misc Ceramics industry |
topic_unstemmed |
ddc 530 bkl 58.00 misc Nicole Riemer misc Particle size misc Synthesis (chemistry) misc Silicon misc Aerosols misc Mathematical models misc Thermodynamic properties misc Accuracy misc Nanoparticles misc Aerosol research misc Condensates misc Silicon nitride misc Deposition misc Condensation misc Predictions misc Chemical vapor deposition misc Nanostructure misc Modelling misc Ceramics industry |
topic_browse |
ddc 530 bkl 58.00 misc Nicole Riemer misc Particle size misc Synthesis (chemistry) misc Silicon misc Aerosols misc Mathematical models misc Thermodynamic properties misc Accuracy misc Nanoparticles misc Aerosol research misc Condensates misc Silicon nitride misc Deposition misc Condensation misc Predictions misc Chemical vapor deposition misc Nanostructure misc Modelling misc Ceramics industry |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d x dx w x wx |
hierarchy_parent_title |
Aerosol science and technology |
hierarchy_parent_id |
130565857 |
dewey-tens |
530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Aerosol science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130565857 (DE-600)787246-X (DE-576)016111559 |
title |
Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
ctrlnum |
(DE-627)OLC1994870230 (DE-599)GBVOLC1994870230 (PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250 (KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil |
title_full |
Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
author_sort |
Wen, Yu |
journal |
Aerosol science and technology |
journalStr |
Aerosol science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
845 |
author_browse |
Wen, Yu |
container_volume |
51 |
class |
530 660 DNB 58.00 bkl |
format_se |
Aufsätze |
author-letter |
Wen, Yu |
doi_str_mv |
10.1080/02786826.2017.1307939 |
dewey-full |
530 660 |
title_sort |
modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
title_auth |
Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
abstract |
Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research |
abstractGer |
Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research |
abstract_unstemmed |
Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_32 GBV_ILN_70 GBV_ILN_4313 |
container_issue |
7 |
title_short |
Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition |
url |
http://dx.doi.org/10.1080/02786826.2017.1307939 http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939 https://search.proquest.com/docview/1902118846 |
remote_bool |
false |
author2 |
Xia, Dehong Xuan, Weiwei |
author2Str |
Xia, Dehong Xuan, Weiwei |
ppnlink |
130565857 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1080/02786826.2017.1307939 |
up_date |
2024-07-03T19:34:03.405Z |
_version_ |
1803587675399127041 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1994870230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510081913.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02786826.2017.1307939</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1994870230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1994870230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1495-764344f41a9ab8b0850be0143340ae51a556c009684e2234b1a857f719b7cd250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0118896820170000051000700845modelingforparticlesizepredictionandmechanismofsil</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wen, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Particle size is a vital characterization for silicon nitride nanoparticle as its scale determines its application area. Particle size prediction for synthesis of silicon nitride nanoparticle by chemical vapor deposition (CVD) is much needed. In this study, a model is proposed for particle growth during silicon nitride nanoparticle synthesis by CVD in order to predict particle size. Comparison between modeling and experimental results validated the model. The modeling results showed that lower pressure in the condensation room would be an effective way of obtaining silicon nitride nanoparticles with smaller particle size. An expression is established to reveal the relation between the mean particle diameter of silicon nitride nanoparticle and pressure in the condensation room based on the modeling. The modeling method is capable of predicting the mean particle size of ultrafine silicon nitride powder to within 3.6% accuracy. Corresponding manufacturing thermal parameters are recommended for silicon nitride nanoparticle production with different mean particle sizes. Modeling and analysis in this article may provide theoretical guidance for production of silicon nitride nanoparticle by CVD. © 2017 American Association for Aerosol Research</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 American Association for Aerosol Research 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nicole Riemer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthesis (chemistry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerosols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerosol research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon nitride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical vapor deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ceramics industry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Dehong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Weiwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aerosol science and technology</subfield><subfield code="d">Philadelphia, Pa. : Taylor & Francis, 1982</subfield><subfield code="g">51(2017), 7, Seite 845</subfield><subfield code="w">(DE-627)130565857</subfield><subfield code="w">(DE-600)787246-X</subfield><subfield code="w">(DE-576)016111559</subfield><subfield code="x">0278-6826</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:845</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02786826.2017.1307939</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/02786826.2017.1307939</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1902118846</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2017</subfield><subfield code="e">7</subfield><subfield code="h">845</subfield></datafield></record></collection>
|
score |
7.4014397 |