A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation
A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relatio...
Ausführliche Beschreibung
Autor*in: |
Xia, Yili [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Complex-valued least squares (CLS) |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on power delivery - New York, NY : IEEE, 1986, 32(2017), 3, Seite 1270-1278 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2017 ; number:3 ; pages:1270-1278 |
Links: |
---|
DOI / URN: |
10.1109/TPWRD.2015.2418778 |
---|
Katalog-ID: |
OLC1995068322 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995068322 | ||
003 | DE-627 | ||
005 | 20210716202617.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPWRD.2015.2418778 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1995068322 | ||
035 | |a (DE-599)GBVOLC1995068322 | ||
035 | |a (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 | ||
035 | |a (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
100 | 1 | |a Xia, Yili |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. | ||
650 | 4 | |a Frequency estimation | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Power system harmonics | |
650 | 4 | |a Complex-valued least squares (CLS) | |
650 | 4 | |a Noise | |
650 | 4 | |a Estimation | |
650 | 4 | |a discrete Fourier transform (DFT) | |
650 | 4 | |a Discrete Fourier transforms | |
700 | 1 | |a He, Yukun |4 oth | |
700 | 1 | |a Wang, Kai |4 oth | |
700 | 1 | |a Pei, Wenjiang |4 oth | |
700 | 1 | |a Blazic, Zoran |4 oth | |
700 | 1 | |a Mandic, Danilo P |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on power delivery |d New York, NY : IEEE, 1986 |g 32(2017), 3, Seite 1270-1278 |w (DE-627)129382914 |w (DE-600)165807-4 |w (DE-576)014769328 |x 0885-8977 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2017 |g number:3 |g pages:1270-1278 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPWRD.2015.2418778 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7086070 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2061 | ||
951 | |a AR | ||
952 | |d 32 |j 2017 |e 3 |h 1270-1278 |
author_variant |
y x yx |
---|---|
matchkey_str |
article:08858977:2017----::cmlxessursnacdmrdtehiufroess |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TPWRD.2015.2418778 doi PQ20170721 (DE-627)OLC1995068322 (DE-599)GBVOLC1995068322 (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow DE-627 ger DE-627 rakwb eng 620 DE-600 Xia, Yili verfasserin aut A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms He, Yukun oth Wang, Kai oth Pei, Wenjiang oth Blazic, Zoran oth Mandic, Danilo P oth Enthalten in IEEE transactions on power delivery New York, NY : IEEE, 1986 32(2017), 3, Seite 1270-1278 (DE-627)129382914 (DE-600)165807-4 (DE-576)014769328 0885-8977 nnns volume:32 year:2017 number:3 pages:1270-1278 http://dx.doi.org/10.1109/TPWRD.2015.2418778 Volltext http://ieeexplore.ieee.org/document/7086070 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2061 AR 32 2017 3 1270-1278 |
spelling |
10.1109/TPWRD.2015.2418778 doi PQ20170721 (DE-627)OLC1995068322 (DE-599)GBVOLC1995068322 (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow DE-627 ger DE-627 rakwb eng 620 DE-600 Xia, Yili verfasserin aut A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms He, Yukun oth Wang, Kai oth Pei, Wenjiang oth Blazic, Zoran oth Mandic, Danilo P oth Enthalten in IEEE transactions on power delivery New York, NY : IEEE, 1986 32(2017), 3, Seite 1270-1278 (DE-627)129382914 (DE-600)165807-4 (DE-576)014769328 0885-8977 nnns volume:32 year:2017 number:3 pages:1270-1278 http://dx.doi.org/10.1109/TPWRD.2015.2418778 Volltext http://ieeexplore.ieee.org/document/7086070 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2061 AR 32 2017 3 1270-1278 |
allfields_unstemmed |
10.1109/TPWRD.2015.2418778 doi PQ20170721 (DE-627)OLC1995068322 (DE-599)GBVOLC1995068322 (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow DE-627 ger DE-627 rakwb eng 620 DE-600 Xia, Yili verfasserin aut A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms He, Yukun oth Wang, Kai oth Pei, Wenjiang oth Blazic, Zoran oth Mandic, Danilo P oth Enthalten in IEEE transactions on power delivery New York, NY : IEEE, 1986 32(2017), 3, Seite 1270-1278 (DE-627)129382914 (DE-600)165807-4 (DE-576)014769328 0885-8977 nnns volume:32 year:2017 number:3 pages:1270-1278 http://dx.doi.org/10.1109/TPWRD.2015.2418778 Volltext http://ieeexplore.ieee.org/document/7086070 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2061 AR 32 2017 3 1270-1278 |
allfieldsGer |
10.1109/TPWRD.2015.2418778 doi PQ20170721 (DE-627)OLC1995068322 (DE-599)GBVOLC1995068322 (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow DE-627 ger DE-627 rakwb eng 620 DE-600 Xia, Yili verfasserin aut A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms He, Yukun oth Wang, Kai oth Pei, Wenjiang oth Blazic, Zoran oth Mandic, Danilo P oth Enthalten in IEEE transactions on power delivery New York, NY : IEEE, 1986 32(2017), 3, Seite 1270-1278 (DE-627)129382914 (DE-600)165807-4 (DE-576)014769328 0885-8977 nnns volume:32 year:2017 number:3 pages:1270-1278 http://dx.doi.org/10.1109/TPWRD.2015.2418778 Volltext http://ieeexplore.ieee.org/document/7086070 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2061 AR 32 2017 3 1270-1278 |
allfieldsSound |
10.1109/TPWRD.2015.2418778 doi PQ20170721 (DE-627)OLC1995068322 (DE-599)GBVOLC1995068322 (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow DE-627 ger DE-627 rakwb eng 620 DE-600 Xia, Yili verfasserin aut A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms He, Yukun oth Wang, Kai oth Pei, Wenjiang oth Blazic, Zoran oth Mandic, Danilo P oth Enthalten in IEEE transactions on power delivery New York, NY : IEEE, 1986 32(2017), 3, Seite 1270-1278 (DE-627)129382914 (DE-600)165807-4 (DE-576)014769328 0885-8977 nnns volume:32 year:2017 number:3 pages:1270-1278 http://dx.doi.org/10.1109/TPWRD.2015.2418778 Volltext http://ieeexplore.ieee.org/document/7086070 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2061 AR 32 2017 3 1270-1278 |
language |
English |
source |
Enthalten in IEEE transactions on power delivery 32(2017), 3, Seite 1270-1278 volume:32 year:2017 number:3 pages:1270-1278 |
sourceStr |
Enthalten in IEEE transactions on power delivery 32(2017), 3, Seite 1270-1278 volume:32 year:2017 number:3 pages:1270-1278 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on power delivery |
authorswithroles_txt_mv |
Xia, Yili @@aut@@ He, Yukun @@oth@@ Wang, Kai @@oth@@ Pei, Wenjiang @@oth@@ Blazic, Zoran @@oth@@ Mandic, Danilo P @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129382914 |
dewey-sort |
3620 |
id |
OLC1995068322 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995068322</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716202617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRD.2015.2418778</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995068322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995068322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Yili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power system harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex-valued least squares (CLS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete Fourier transform (DFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Fourier transforms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yukun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Wenjiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blazic, Zoran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mandic, Danilo P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power delivery</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">32(2017), 3, Seite 1270-1278</subfield><subfield code="w">(DE-627)129382914</subfield><subfield code="w">(DE-600)165807-4</subfield><subfield code="w">(DE-576)014769328</subfield><subfield code="x">0885-8977</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1270-1278</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRD.2015.2418778</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7086070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">1270-1278</subfield></datafield></record></collection>
|
author |
Xia, Yili |
spellingShingle |
Xia, Yili ddc 620 misc Frequency estimation misc Harmonic analysis misc Power system harmonics misc Complex-valued least squares (CLS) misc Noise misc Estimation misc discrete Fourier transform (DFT) misc Discrete Fourier transforms A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation |
authorStr |
Xia, Yili |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129382914 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-8977 |
topic_title |
620 DE-600 A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation Frequency estimation Harmonic analysis Power system harmonics Complex-valued least squares (CLS) Noise Estimation discrete Fourier transform (DFT) Discrete Fourier transforms |
topic |
ddc 620 misc Frequency estimation misc Harmonic analysis misc Power system harmonics misc Complex-valued least squares (CLS) misc Noise misc Estimation misc discrete Fourier transform (DFT) misc Discrete Fourier transforms |
topic_unstemmed |
ddc 620 misc Frequency estimation misc Harmonic analysis misc Power system harmonics misc Complex-valued least squares (CLS) misc Noise misc Estimation misc discrete Fourier transform (DFT) misc Discrete Fourier transforms |
topic_browse |
ddc 620 misc Frequency estimation misc Harmonic analysis misc Power system harmonics misc Complex-valued least squares (CLS) misc Noise misc Estimation misc discrete Fourier transform (DFT) misc Discrete Fourier transforms |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y h yh k w kw w p wp z b zb d p m dp dpm |
hierarchy_parent_title |
IEEE transactions on power delivery |
hierarchy_parent_id |
129382914 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on power delivery |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129382914 (DE-600)165807-4 (DE-576)014769328 |
title |
A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation |
ctrlnum |
(DE-627)OLC1995068322 (DE-599)GBVOLC1995068322 (PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0 (KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow |
title_full |
A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation |
author_sort |
Xia, Yili |
journal |
IEEE transactions on power delivery |
journalStr |
IEEE transactions on power delivery |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1270 |
author_browse |
Xia, Yili |
container_volume |
32 |
class |
620 DE-600 |
format_se |
Aufsätze |
author-letter |
Xia, Yili |
doi_str_mv |
10.1109/TPWRD.2015.2418778 |
dewey-full |
620 |
title_sort |
complex least squares enhanced smart dft technique for power system frequency estimation |
title_auth |
A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation |
abstract |
A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. |
abstractGer |
A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. |
abstract_unstemmed |
A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2061 |
container_issue |
3 |
title_short |
A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation |
url |
http://dx.doi.org/10.1109/TPWRD.2015.2418778 http://ieeexplore.ieee.org/document/7086070 |
remote_bool |
false |
author2 |
He, Yukun Wang, Kai Pei, Wenjiang Blazic, Zoran Mandic, Danilo P |
author2Str |
He, Yukun Wang, Kai Pei, Wenjiang Blazic, Zoran Mandic, Danilo P |
ppnlink |
129382914 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1109/TPWRD.2015.2418778 |
up_date |
2024-07-03T20:20:48.339Z |
_version_ |
1803590616577212416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995068322</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716202617.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPWRD.2015.2418778</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995068322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995068322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1326-4a8e8e6a23117e31497695962f0c4a42b0533a18b74c8e8fac48446290e16f1b0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163644820170000032000301270complexleastsquaresenhancedsmartdfttechniqueforpow</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Yili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A complex-valued least-squares (CLS) framework is proposed in order to enhance the accuracy of the smart discrete Fourier transform (SDFT) algorithms for power system frequency estimation in the presence of noise and harmonic pollution. It is first established that the underlying time-series relationship among the consecutive DFT fundamental components employed by the original SDFT algorithms does not hold when noises or unexpected higher order harmonics are present, resulting in suboptimal estimation performances. To eliminate these adverse effects on the frequency estimation, the degree of the relationship breakdown is next quantified via a model mismatch error vector. The CLS technique is then employed to minimize the mean-square model deviation when the SDFT voltage modelling is suboptimal. The proposed CLS-enhanced SDFT (CLS-SDFT) methods are shown to be more accurate than the original ones in heavily noisy and harmonic-distorted environments, typical scenarios in online frequency estimation. The benefits of the SDFT framework are verified by simulations for various power system conditions, as well as for real-world measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power system harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex-valued least squares (CLS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete Fourier transform (DFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Fourier transforms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Yukun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Wenjiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blazic, Zoran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mandic, Danilo P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on power delivery</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">32(2017), 3, Seite 1270-1278</subfield><subfield code="w">(DE-627)129382914</subfield><subfield code="w">(DE-600)165807-4</subfield><subfield code="w">(DE-576)014769328</subfield><subfield code="x">0885-8977</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1270-1278</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPWRD.2015.2418778</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7086070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="h">1270-1278</subfield></datafield></record></collection>
|
score |
7.400032 |