Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean
Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting durin...
Ausführliche Beschreibung
Autor*in: |
Mills, Jennifer V [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geology - Boulder, Colo. : Soc., 1973, 45(2017), 5, Seite 475 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2017 ; number:5 ; pages:475 |
Links: |
---|
DOI / URN: |
10.1130/G38667.1 |
---|
Katalog-ID: |
OLC1995069663 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995069663 | ||
003 | DE-627 | ||
005 | 20220221023613.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1130/G38667.1 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1995069663 | ||
035 | |a (DE-599)GBVOLC1995069663 | ||
035 | |a (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 | ||
035 | |a (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.10 |2 bkl | ||
100 | 1 | |a Mills, Jennifer V |e verfasserin |4 aut | |
245 | 1 | 0 | |a Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. | ||
650 | 4 | |a Ocean circulation | |
650 | 4 | |a Volcanism | |
650 | 4 | |a Research | |
650 | 4 | |a Oceanographic research | |
700 | 1 | |a Gomes, Maya L |4 oth | |
700 | 1 | |a Kristall, Brian |4 oth | |
700 | 1 | |a Sageman, Bradley B |4 oth | |
700 | 1 | |a Jacobson, Andrew D |4 oth | |
700 | 1 | |a Hurtgen, Matthew T |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geology |d Boulder, Colo. : Soc., 1973 |g 45(2017), 5, Seite 475 |w (DE-627)129391921 |w (DE-600)184929-3 |w (DE-576)014777045 |x 0091-7613 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2017 |g number:5 |g pages:475 |
856 | 4 | 1 | |u http://dx.doi.org/10.1130/G38667.1 |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4323 | ||
936 | b | k | |a 38.10 |q AVZ |
951 | |a AR | ||
952 | |d 45 |j 2017 |e 5 |h 475 |
author_variant |
j v m jv jvm |
---|---|
matchkey_str |
article:00917613:2017----::asvvlaimvprtdpstoadhceiaeouinf |
hierarchy_sort_str |
2017 |
bklnumber |
38.10 |
publishDate |
2017 |
allfields |
10.1130/G38667.1 doi PQ20170721 (DE-627)OLC1995069663 (DE-599)GBVOLC1995069663 (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale DE-627 ger DE-627 rakwb eng 550 DNB 38.10 bkl Mills, Jennifer V verfasserin aut Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. Ocean circulation Volcanism Research Oceanographic research Gomes, Maya L oth Kristall, Brian oth Sageman, Bradley B oth Jacobson, Andrew D oth Hurtgen, Matthew T oth Enthalten in Geology Boulder, Colo. : Soc., 1973 45(2017), 5, Seite 475 (DE-627)129391921 (DE-600)184929-3 (DE-576)014777045 0091-7613 nnns volume:45 year:2017 number:5 pages:475 http://dx.doi.org/10.1130/G38667.1 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_120 GBV_ILN_154 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4323 38.10 AVZ AR 45 2017 5 475 |
spelling |
10.1130/G38667.1 doi PQ20170721 (DE-627)OLC1995069663 (DE-599)GBVOLC1995069663 (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale DE-627 ger DE-627 rakwb eng 550 DNB 38.10 bkl Mills, Jennifer V verfasserin aut Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. Ocean circulation Volcanism Research Oceanographic research Gomes, Maya L oth Kristall, Brian oth Sageman, Bradley B oth Jacobson, Andrew D oth Hurtgen, Matthew T oth Enthalten in Geology Boulder, Colo. : Soc., 1973 45(2017), 5, Seite 475 (DE-627)129391921 (DE-600)184929-3 (DE-576)014777045 0091-7613 nnns volume:45 year:2017 number:5 pages:475 http://dx.doi.org/10.1130/G38667.1 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_120 GBV_ILN_154 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4323 38.10 AVZ AR 45 2017 5 475 |
allfields_unstemmed |
10.1130/G38667.1 doi PQ20170721 (DE-627)OLC1995069663 (DE-599)GBVOLC1995069663 (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale DE-627 ger DE-627 rakwb eng 550 DNB 38.10 bkl Mills, Jennifer V verfasserin aut Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. Ocean circulation Volcanism Research Oceanographic research Gomes, Maya L oth Kristall, Brian oth Sageman, Bradley B oth Jacobson, Andrew D oth Hurtgen, Matthew T oth Enthalten in Geology Boulder, Colo. : Soc., 1973 45(2017), 5, Seite 475 (DE-627)129391921 (DE-600)184929-3 (DE-576)014777045 0091-7613 nnns volume:45 year:2017 number:5 pages:475 http://dx.doi.org/10.1130/G38667.1 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_120 GBV_ILN_154 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4323 38.10 AVZ AR 45 2017 5 475 |
allfieldsGer |
10.1130/G38667.1 doi PQ20170721 (DE-627)OLC1995069663 (DE-599)GBVOLC1995069663 (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale DE-627 ger DE-627 rakwb eng 550 DNB 38.10 bkl Mills, Jennifer V verfasserin aut Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. Ocean circulation Volcanism Research Oceanographic research Gomes, Maya L oth Kristall, Brian oth Sageman, Bradley B oth Jacobson, Andrew D oth Hurtgen, Matthew T oth Enthalten in Geology Boulder, Colo. : Soc., 1973 45(2017), 5, Seite 475 (DE-627)129391921 (DE-600)184929-3 (DE-576)014777045 0091-7613 nnns volume:45 year:2017 number:5 pages:475 http://dx.doi.org/10.1130/G38667.1 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_120 GBV_ILN_154 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4323 38.10 AVZ AR 45 2017 5 475 |
allfieldsSound |
10.1130/G38667.1 doi PQ20170721 (DE-627)OLC1995069663 (DE-599)GBVOLC1995069663 (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale DE-627 ger DE-627 rakwb eng 550 DNB 38.10 bkl Mills, Jennifer V verfasserin aut Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc. Ocean circulation Volcanism Research Oceanographic research Gomes, Maya L oth Kristall, Brian oth Sageman, Bradley B oth Jacobson, Andrew D oth Hurtgen, Matthew T oth Enthalten in Geology Boulder, Colo. : Soc., 1973 45(2017), 5, Seite 475 (DE-627)129391921 (DE-600)184929-3 (DE-576)014777045 0091-7613 nnns volume:45 year:2017 number:5 pages:475 http://dx.doi.org/10.1130/G38667.1 Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_120 GBV_ILN_154 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4323 38.10 AVZ AR 45 2017 5 475 |
language |
English |
source |
Enthalten in Geology 45(2017), 5, Seite 475 volume:45 year:2017 number:5 pages:475 |
sourceStr |
Enthalten in Geology 45(2017), 5, Seite 475 volume:45 year:2017 number:5 pages:475 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ocean circulation Volcanism Research Oceanographic research |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geology |
authorswithroles_txt_mv |
Mills, Jennifer V @@aut@@ Gomes, Maya L @@oth@@ Kristall, Brian @@oth@@ Sageman, Bradley B @@oth@@ Jacobson, Andrew D @@oth@@ Hurtgen, Matthew T @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129391921 |
dewey-sort |
3550 |
id |
OLC1995069663 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995069663</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221023613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1130/G38667.1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995069663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995069663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mills, Jennifer V</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean circulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanographic research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Maya L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kristall, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sageman, Bradley B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jacobson, Andrew D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hurtgen, Matthew T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geology</subfield><subfield code="d">Boulder, Colo. : Soc., 1973</subfield><subfield code="g">45(2017), 5, Seite 475</subfield><subfield code="w">(DE-627)129391921</subfield><subfield code="w">(DE-600)184929-3</subfield><subfield code="w">(DE-576)014777045</subfield><subfield code="x">0091-7613</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:475</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1130/G38667.1</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.10</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">475</subfield></datafield></record></collection>
|
author |
Mills, Jennifer V |
spellingShingle |
Mills, Jennifer V ddc 550 bkl 38.10 misc Ocean circulation misc Volcanism misc Research misc Oceanographic research Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean |
authorStr |
Mills, Jennifer V |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129391921 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0091-7613 |
topic_title |
550 DNB 38.10 bkl Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean Ocean circulation Volcanism Research Oceanographic research |
topic |
ddc 550 bkl 38.10 misc Ocean circulation misc Volcanism misc Research misc Oceanographic research |
topic_unstemmed |
ddc 550 bkl 38.10 misc Ocean circulation misc Volcanism misc Research misc Oceanographic research |
topic_browse |
ddc 550 bkl 38.10 misc Ocean circulation misc Volcanism misc Research misc Oceanographic research |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m l g ml mlg b k bk b b s bb bbs a d j ad adj m t h mt mth |
hierarchy_parent_title |
Geology |
hierarchy_parent_id |
129391921 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129391921 (DE-600)184929-3 (DE-576)014777045 |
title |
Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean |
ctrlnum |
(DE-627)OLC1995069663 (DE-599)GBVOLC1995069663 (PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110 (KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale |
title_full |
Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean |
author_sort |
Mills, Jennifer V |
journal |
Geology |
journalStr |
Geology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
475 |
author_browse |
Mills, Jennifer V |
container_volume |
45 |
class |
550 DNB 38.10 bkl |
format_se |
Aufsätze |
author-letter |
Mills, Jennifer V |
doi_str_mv |
10.1130/G38667.1 |
dewey-full |
550 |
title_sort |
massive volcanism, evaporite deposition, and the chemical evolution of the early cretaceous ocean |
title_auth |
Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean |
abstract |
Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. |
abstractGer |
Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. |
abstract_unstemmed |
Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_21 GBV_ILN_120 GBV_ILN_154 GBV_ILN_2011 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4323 |
container_issue |
5 |
title_short |
Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean |
url |
http://dx.doi.org/10.1130/G38667.1 |
remote_bool |
false |
author2 |
Gomes, Maya L Kristall, Brian Sageman, Bradley B Jacobson, Andrew D Hurtgen, Matthew T |
author2Str |
Gomes, Maya L Kristall, Brian Sageman, Bradley B Jacobson, Andrew D Hurtgen, Matthew T |
ppnlink |
129391921 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1130/G38667.1 |
up_date |
2024-07-03T20:21:11.841Z |
_version_ |
1803590641220845568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995069663</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221023613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1130/G38667.1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995069663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995069663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g597-719a20cf84730e0fc2b2d636c3038ca0cc7282b0d25e27384faf25782791ef110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0163754120170000045000500475massivevolcanismevaporitedepositionandthechemicale</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mills, Jennifer V</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Early Cretaceous (145-100 Ma) rocks record a ~5 [per thousand] negative shift in the sulfur isotope composition of marine sulfate, the largest shift observed over the past 130 m.y. Two hypotheses have been proposed to explain this shift: (1) massive evaporite deposition associated with rifting during opening of the South Atlantic and (2) increased inputs of volcanically derived sulfur due to eruption of large igneous provinces. Each process produces a very different impact on marine sulfate concentrations, which in turn affects several biogeochemical phenomena that regulate the global carbon cycle and climate. Here we present sulfur isotope data from Resolution Guyot, Mid-Pacific Mountains (North Pacific Ocean), that track sympathetically with strontium isotope records through the ~5 [per thousand] negative sulfur isotope shift. We employ a linked sulfur-strontium isotope mass-balance model to identify the mechanisms driving the sulfur isotope evolution of the Cretaceous ocean. The model only reproduces the coupled negative sulfur and strontium isotope shifts when both hydrothermal and weathering fluxes increase. Our results indicate that marine sulfate concentrations increased significantly during the negative sulfur isotope shift and that enhanced hydrothermal and weathering input fluxes to the ocean played a dominant role in regulating the marine sulfur cycle and C[O.sub.2] exchange in the atmosphere-ocean system during this interval of rapid biogeochemical change.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2017 Geological Society of America, Inc.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ocean circulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanographic research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Maya L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kristall, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sageman, Bradley B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jacobson, Andrew D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hurtgen, Matthew T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geology</subfield><subfield code="d">Boulder, Colo. : Soc., 1973</subfield><subfield code="g">45(2017), 5, Seite 475</subfield><subfield code="w">(DE-627)129391921</subfield><subfield code="w">(DE-600)184929-3</subfield><subfield code="w">(DE-576)014777045</subfield><subfield code="x">0091-7613</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:475</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1130/G38667.1</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.10</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="h">475</subfield></datafield></record></collection>
|
score |
7.401394 |