Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load
AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are c...
Ausführliche Beschreibung
Autor*in: |
Panda, Subrata Kumar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 American Society of Civil Engineers |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of aerospace engineering - New York, NY : Soc., 1988, 30(2017), 3 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2017 ; number:3 |
Links: |
---|
DOI / URN: |
10.1061/(ASCE)AS.1943-5525.0000706 |
---|
Katalog-ID: |
OLC1995081582 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995081582 | ||
003 | DE-627 | ||
005 | 20211209061035.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1061/(ASCE)AS.1943-5525.0000706 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC1995081582 | ||
035 | |a (DE-599)GBVOLC1995081582 | ||
035 | |a (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 | ||
035 | |a (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ZDB |
100 | 1 | |a Panda, Subrata Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. | ||
540 | |a Nutzungsrecht: © 2016 American Society of Civil Engineers | ||
650 | 4 | |a Technical Papers | |
700 | 1 | |a Mehar, Kulmani |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of aerospace engineering |d New York, NY : Soc., 1988 |g 30(2017), 3 |w (DE-627)130680117 |w (DE-600)885027-6 |w (DE-576)016221990 |x 0893-1321 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2017 |g number:3 |
856 | 4 | 1 | |u http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 |3 Volltext |
856 | 4 | 2 | |u http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
951 | |a AR | ||
952 | |d 30 |j 2017 |e 3 |
author_variant |
s k p sk skp |
---|---|
matchkey_str |
article:08931321:2017----::olnasaibhvoofctenocdopstfapnln |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1061/(ASCE)AS.1943-5525.0000706 doi PQ20170901 (DE-627)OLC1995081582 (DE-599)GBVOLC1995081582 (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef DE-627 ger DE-627 rakwb eng 620 ZDB Panda, Subrata Kumar verfasserin aut Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. Nutzungsrecht: © 2016 American Society of Civil Engineers Technical Papers Mehar, Kulmani oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 3 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:3 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 3 |
spelling |
10.1061/(ASCE)AS.1943-5525.0000706 doi PQ20170901 (DE-627)OLC1995081582 (DE-599)GBVOLC1995081582 (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef DE-627 ger DE-627 rakwb eng 620 ZDB Panda, Subrata Kumar verfasserin aut Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. Nutzungsrecht: © 2016 American Society of Civil Engineers Technical Papers Mehar, Kulmani oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 3 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:3 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 3 |
allfields_unstemmed |
10.1061/(ASCE)AS.1943-5525.0000706 doi PQ20170901 (DE-627)OLC1995081582 (DE-599)GBVOLC1995081582 (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef DE-627 ger DE-627 rakwb eng 620 ZDB Panda, Subrata Kumar verfasserin aut Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. Nutzungsrecht: © 2016 American Society of Civil Engineers Technical Papers Mehar, Kulmani oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 3 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:3 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 3 |
allfieldsGer |
10.1061/(ASCE)AS.1943-5525.0000706 doi PQ20170901 (DE-627)OLC1995081582 (DE-599)GBVOLC1995081582 (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef DE-627 ger DE-627 rakwb eng 620 ZDB Panda, Subrata Kumar verfasserin aut Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. Nutzungsrecht: © 2016 American Society of Civil Engineers Technical Papers Mehar, Kulmani oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 3 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:3 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 3 |
allfieldsSound |
10.1061/(ASCE)AS.1943-5525.0000706 doi PQ20170901 (DE-627)OLC1995081582 (DE-599)GBVOLC1995081582 (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef DE-627 ger DE-627 rakwb eng 620 ZDB Panda, Subrata Kumar verfasserin aut Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. Nutzungsrecht: © 2016 American Society of Civil Engineers Technical Papers Mehar, Kulmani oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 3 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:3 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 3 |
language |
English |
source |
Enthalten in Journal of aerospace engineering 30(2017), 3 volume:30 year:2017 number:3 |
sourceStr |
Enthalten in Journal of aerospace engineering 30(2017), 3 volume:30 year:2017 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Technical Papers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of aerospace engineering |
authorswithroles_txt_mv |
Panda, Subrata Kumar @@aut@@ Mehar, Kulmani @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130680117 |
dewey-sort |
3620 |
id |
OLC1995081582 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995081582</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20211209061035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1061/(ASCE)AS.1943-5525.0000706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995081582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995081582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Panda, Subrata Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 American Society of Civil Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technical Papers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehar, Kulmani</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of aerospace engineering</subfield><subfield code="d">New York, NY : Soc., 1988</subfield><subfield code="g">30(2017), 3</subfield><subfield code="w">(DE-627)130680117</subfield><subfield code="w">(DE-600)885027-6</subfield><subfield code="w">(DE-576)016221990</subfield><subfield code="x">0893-1321</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
author |
Panda, Subrata Kumar |
spellingShingle |
Panda, Subrata Kumar ddc 620 misc Technical Papers Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load |
authorStr |
Panda, Subrata Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130680117 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0893-1321 |
topic_title |
620 ZDB Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load Technical Papers |
topic |
ddc 620 misc Technical Papers |
topic_unstemmed |
ddc 620 misc Technical Papers |
topic_browse |
ddc 620 misc Technical Papers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k m km |
hierarchy_parent_title |
Journal of aerospace engineering |
hierarchy_parent_id |
130680117 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of aerospace engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 |
title |
Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load |
ctrlnum |
(DE-627)OLC1995081582 (DE-599)GBVOLC1995081582 (PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670 (KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef |
title_full |
Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load |
author_sort |
Panda, Subrata Kumar |
journal |
Journal of aerospace engineering |
journalStr |
Journal of aerospace engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Panda, Subrata Kumar |
container_volume |
30 |
class |
620 ZDB |
format_se |
Aufsätze |
author-letter |
Panda, Subrata Kumar |
doi_str_mv |
10.1061/(ASCE)AS.1943-5525.0000706 |
dewey-full |
620 |
title_sort |
nonlinear static behavior of fg-cnt reinforced composite flat panel under thermomechanical load |
title_auth |
Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load |
abstract |
AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. |
abstractGer |
AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. |
abstract_unstemmed |
AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 |
container_issue |
3 |
title_short |
Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load |
url |
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706 http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706 |
remote_bool |
false |
author2 |
Mehar, Kulmani |
author2Str |
Mehar, Kulmani |
ppnlink |
130680117 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1061/(ASCE)AS.1943-5525.0000706 |
up_date |
2024-07-03T20:23:28.372Z |
_version_ |
1803590784382926848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995081582</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20211209061035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1061/(ASCE)AS.1943-5525.0000706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995081582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995081582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1418-29b5bea58af4a629a24feb3452d6d753328e034aeb0b4bec836b7fb5111bc8670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0165901420170000030000300000nonlinearstaticbehavioroffgcntreinforcedcompositef</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Panda, Subrata Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Static Behavior of FG-CNT Reinforced Composite Flat Panel under Thermomechanical Load</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractThe nonlinear static deflections of a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel are examined under a uniform thermal environment for different end conditions. The temperature-dependent material properties of the matrix and the fiber (carbon nanotubes) are considered in conjunction with the different gradients of carbon nanotube concentrations through the thickness direction. The mathematical model of the carbon nanotube reinforced flat composite panel is formulated for different types of gradients using the Green-Lagrange geometrical strain in the framework of the shear deformable higher-order kinematic theory. Further, the equilibrium equation of the panel is obtained using the variational method and discretized through the finite-element concept. The nonlinear deflections are worked out numerically using the direct iterative method via a suitable computer code. The validation and the convergence performance of the present numerical results were checked. Finally, the significance and inevitability of such a higher-order nonlinear model for the analysis of gradient carbon nanotube structure are established by solving different numerical examples for various parameters (types of grading, aspect ratios, thickness ratios, volume fractions, thermal field, and end conditions) and discussed in detail.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 American Society of Civil Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technical Papers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehar, Kulmani</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of aerospace engineering</subfield><subfield code="d">New York, NY : Soc., 1988</subfield><subfield code="g">30(2017), 3</subfield><subfield code="w">(DE-627)130680117</subfield><subfield code="w">(DE-600)885027-6</subfield><subfield code="w">(DE-576)016221990</subfield><subfield code="x">0893-1321</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000706</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000706</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.4008274 |