Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling
AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the...
Ausführliche Beschreibung
Autor*in: |
Chu, Qiping [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 American Society of Civil Engineers |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of aerospace engineering - New York, NY : Soc., 1988, 30(2017), 5 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2017 ; number:5 |
Links: |
---|
DOI / URN: |
10.1061/(ASCE)AS.1943-5525.0000755 |
---|
Katalog-ID: |
OLC199508171X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199508171X | ||
003 | DE-627 | ||
005 | 20211209061035.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1061/(ASCE)AS.1943-5525.0000755 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC199508171X | ||
035 | |a (DE-599)GBVOLC199508171X | ||
035 | |a (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 | ||
035 | |a (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ZDB |
100 | 1 | |a Chu, Qiping |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. | ||
540 | |a Nutzungsrecht: © 2017 American Society of Civil Engineers | ||
650 | 4 | |a Technical Papers | |
700 | 1 | |a Sun, Liguo |4 oth | |
700 | 1 | |a Wang, Yanyang |4 oth | |
700 | 1 | |a de Visser, Coen |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of aerospace engineering |d New York, NY : Soc., 1988 |g 30(2017), 5 |w (DE-627)130680117 |w (DE-600)885027-6 |w (DE-576)016221990 |x 0893-1321 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2017 |g number:5 |
856 | 4 | 1 | |u http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 |3 Volltext |
856 | 4 | 2 | |u http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
951 | |a AR | ||
952 | |d 30 |j 2017 |e 5 |
author_variant |
q c qc |
---|---|
matchkey_str |
article:08931321:2017----::mrvnfeiiiyfutvraepieoesrcuef |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1061/(ASCE)AS.1943-5525.0000755 doi PQ20170901 (DE-627)OLC199508171X (DE-599)GBVOLC199508171X (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc DE-627 ger DE-627 rakwb eng 620 ZDB Chu, Qiping verfasserin aut Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Sun, Liguo oth Wang, Yanyang oth de Visser, Coen oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 5 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:5 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 5 |
spelling |
10.1061/(ASCE)AS.1943-5525.0000755 doi PQ20170901 (DE-627)OLC199508171X (DE-599)GBVOLC199508171X (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc DE-627 ger DE-627 rakwb eng 620 ZDB Chu, Qiping verfasserin aut Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Sun, Liguo oth Wang, Yanyang oth de Visser, Coen oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 5 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:5 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 5 |
allfields_unstemmed |
10.1061/(ASCE)AS.1943-5525.0000755 doi PQ20170901 (DE-627)OLC199508171X (DE-599)GBVOLC199508171X (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc DE-627 ger DE-627 rakwb eng 620 ZDB Chu, Qiping verfasserin aut Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Sun, Liguo oth Wang, Yanyang oth de Visser, Coen oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 5 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:5 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 5 |
allfieldsGer |
10.1061/(ASCE)AS.1943-5525.0000755 doi PQ20170901 (DE-627)OLC199508171X (DE-599)GBVOLC199508171X (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc DE-627 ger DE-627 rakwb eng 620 ZDB Chu, Qiping verfasserin aut Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Sun, Liguo oth Wang, Yanyang oth de Visser, Coen oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 5 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:5 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 5 |
allfieldsSound |
10.1061/(ASCE)AS.1943-5525.0000755 doi PQ20170901 (DE-627)OLC199508171X (DE-599)GBVOLC199508171X (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc DE-627 ger DE-627 rakwb eng 620 ZDB Chu, Qiping verfasserin aut Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. Nutzungsrecht: © 2017 American Society of Civil Engineers Technical Papers Sun, Liguo oth Wang, Yanyang oth de Visser, Coen oth Enthalten in Journal of aerospace engineering New York, NY : Soc., 1988 30(2017), 5 (DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 0893-1321 nnns volume:30 year:2017 number:5 http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 Volltext http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 AR 30 2017 5 |
language |
English |
source |
Enthalten in Journal of aerospace engineering 30(2017), 5 volume:30 year:2017 number:5 |
sourceStr |
Enthalten in Journal of aerospace engineering 30(2017), 5 volume:30 year:2017 number:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Technical Papers |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of aerospace engineering |
authorswithroles_txt_mv |
Chu, Qiping @@aut@@ Sun, Liguo @@oth@@ Wang, Yanyang @@oth@@ de Visser, Coen @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130680117 |
dewey-sort |
3620 |
id |
OLC199508171X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199508171X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20211209061035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1061/(ASCE)AS.1943-5525.0000755</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199508171X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199508171X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chu, Qiping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 American Society of Civil Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technical Papers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Liguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yanyang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Visser, Coen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of aerospace engineering</subfield><subfield code="d">New York, NY : Soc., 1988</subfield><subfield code="g">30(2017), 5</subfield><subfield code="w">(DE-627)130680117</subfield><subfield code="w">(DE-600)885027-6</subfield><subfield code="w">(DE-576)016221990</subfield><subfield code="x">0893-1321</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
author |
Chu, Qiping |
spellingShingle |
Chu, Qiping ddc 620 misc Technical Papers Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling |
authorStr |
Chu, Qiping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130680117 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0893-1321 |
topic_title |
620 ZDB Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling Technical Papers |
topic |
ddc 620 misc Technical Papers |
topic_unstemmed |
ddc 620 misc Technical Papers |
topic_browse |
ddc 620 misc Technical Papers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
l s ls y w yw v c d vc vcd |
hierarchy_parent_title |
Journal of aerospace engineering |
hierarchy_parent_id |
130680117 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of aerospace engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130680117 (DE-600)885027-6 (DE-576)016221990 |
title |
Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling |
ctrlnum |
(DE-627)OLC199508171X (DE-599)GBVOLC199508171X (PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0 (KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc |
title_full |
Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling |
author_sort |
Chu, Qiping |
journal |
Journal of aerospace engineering |
journalStr |
Journal of aerospace engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Chu, Qiping |
container_volume |
30 |
class |
620 ZDB |
format_se |
Aufsätze |
author-letter |
Chu, Qiping |
doi_str_mv |
10.1061/(ASCE)AS.1943-5525.0000755 |
dewey-full |
620 |
title_sort |
improving flexibility of multivariate spline model structures for aerodynamic modeling |
title_auth |
Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling |
abstract |
AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. |
abstractGer |
AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. |
abstract_unstemmed |
AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2006 |
container_issue |
5 |
title_short |
Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling |
url |
http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755 http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755 |
remote_bool |
false |
author2 |
Sun, Liguo Wang, Yanyang de Visser, Coen |
author2Str |
Sun, Liguo Wang, Yanyang de Visser, Coen |
ppnlink |
130680117 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1061/(ASCE)AS.1943-5525.0000755 |
up_date |
2024-07-03T20:23:30.089Z |
_version_ |
1803590786183331840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199508171X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20211209061035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1061/(ASCE)AS.1943-5525.0000755</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199508171X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199508171X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a766-7fac2e8e83e10f8003b2968dd99a6815315f555682b26e07f988a8c95d8fe66a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0165901420170000030000500000improvingflexibilityofmultivariatesplinemodelstruc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chu, Qiping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving Flexibility of Multivariate Spline Model Structures for Aerodynamic Modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">AbstractRecently, multivariate simplex B-splines (MVSB) function approximators have been investigated with the aim of providing accurate global aerodynamic models for use in adaptive flight control systems. In this paper, a new approach for constructing multivariate spline models is presented in the form of the tensor-product MVSB (TP-MVSB) that consists of tensor products of ordinary MVSB. The key advantage of this new approach is that it provides more flexibility in the definition of the spline model structure than the standard multivariate spline approach. This flexibility allows the user to include a priori (expert) knowledge of the system in the definition of the spline model structure leading to more efficient and physically meaningful models. The TP-MVSB maintains the desirable properties of the MVSB in the sense that the global B-form regression vector is normalized, each basis polynomial is guaranteed to be well-conditioned numerically, and differentiability is maintained along each input dimension. The new approach is validated using data obtained from a nonlinear F-16 model. Simulation results show that the new approach can achieve a higher level of approximation accuracy using fewer parameters when modeling the aerodynamic moment coefficients, and in addition can provide accurate estimations of the control effectiveness matrix in cases where the system is affine in the inputs.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 American Society of Civil Engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technical Papers</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Liguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yanyang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Visser, Coen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of aerospace engineering</subfield><subfield code="d">New York, NY : Soc., 1988</subfield><subfield code="g">30(2017), 5</subfield><subfield code="w">(DE-627)130680117</subfield><subfield code="w">(DE-600)885027-6</subfield><subfield code="w">(DE-576)016221990</subfield><subfield code="x">0893-1321</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000755</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000755</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
score |
7.403078 |