Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites
Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites cons...
Ausführliche Beschreibung
Autor*in: |
Chu, Zhaoqiang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Advanced materials - Weinheim : Wiley-VCH Verl., 1988, 29(2017), 19 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2017 ; number:19 |
Links: |
---|
DOI / URN: |
10.1002/adma.201606022 |
---|
Katalog-ID: |
OLC1995124303 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995124303 | ||
003 | DE-627 | ||
005 | 20230519014446.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/adma.201606022 |2 doi | |
028 | 5 | 2 | |a PQ20170721 |
035 | |a (DE-627)OLC1995124303 | ||
035 | |a (DE-599)GBVOLC1995124303 | ||
035 | |a (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 | ||
035 | |a (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 540 |q DE-101 |
082 | 0 | 4 | |a 540 |q AVZ |
084 | |a UA 1538 |q AVZ |2 rvk | ||
100 | 1 | |a Chu, Zhaoqiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). | ||
540 | |a Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | ||
650 | 4 | |a laser treatment | |
650 | 4 | |a flux‐concentration effect | |
650 | 4 | |a magnetoelectric | |
650 | 4 | |a magnetic sensors | |
700 | 1 | |a Shi, Huaduo |4 oth | |
700 | 1 | |a Shi, Weiliang |4 oth | |
700 | 1 | |a Liu, Guoxi |4 oth | |
700 | 1 | |a Wu, Jingen |4 oth | |
700 | 1 | |a Yang, Jikun |4 oth | |
700 | 1 | |a Dong, Shuxiang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Advanced materials |d Weinheim : Wiley-VCH Verl., 1988 |g 29(2017), 19 |w (DE-627)130815152 |w (DE-600)1012489-5 |w (DE-576)023057149 |x 0935-9648 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2017 |g number:19 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/adma.201606022 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_4306 | ||
936 | r | v | |a UA 1538 |
951 | |a AR | ||
952 | |d 29 |j 2017 |e 19 |
author_variant |
z c zc |
---|---|
matchkey_str |
article:09359648:2017----::nacdeoacmgeolcrcopign1on |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/adma.201606022 doi PQ20170721 (DE-627)OLC1995124303 (DE-599)GBVOLC1995124303 (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Chu, Zhaoqiang verfasserin aut Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim laser treatment flux‐concentration effect magnetoelectric magnetic sensors Shi, Huaduo oth Shi, Weiliang oth Liu, Guoxi oth Wu, Jingen oth Yang, Jikun oth Dong, Shuxiang oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 19 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:19 http://dx.doi.org/10.1002/adma.201606022 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 19 |
spelling |
10.1002/adma.201606022 doi PQ20170721 (DE-627)OLC1995124303 (DE-599)GBVOLC1995124303 (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Chu, Zhaoqiang verfasserin aut Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim laser treatment flux‐concentration effect magnetoelectric magnetic sensors Shi, Huaduo oth Shi, Weiliang oth Liu, Guoxi oth Wu, Jingen oth Yang, Jikun oth Dong, Shuxiang oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 19 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:19 http://dx.doi.org/10.1002/adma.201606022 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 19 |
allfields_unstemmed |
10.1002/adma.201606022 doi PQ20170721 (DE-627)OLC1995124303 (DE-599)GBVOLC1995124303 (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Chu, Zhaoqiang verfasserin aut Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim laser treatment flux‐concentration effect magnetoelectric magnetic sensors Shi, Huaduo oth Shi, Weiliang oth Liu, Guoxi oth Wu, Jingen oth Yang, Jikun oth Dong, Shuxiang oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 19 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:19 http://dx.doi.org/10.1002/adma.201606022 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 19 |
allfieldsGer |
10.1002/adma.201606022 doi PQ20170721 (DE-627)OLC1995124303 (DE-599)GBVOLC1995124303 (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Chu, Zhaoqiang verfasserin aut Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim laser treatment flux‐concentration effect magnetoelectric magnetic sensors Shi, Huaduo oth Shi, Weiliang oth Liu, Guoxi oth Wu, Jingen oth Yang, Jikun oth Dong, Shuxiang oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 19 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:19 http://dx.doi.org/10.1002/adma.201606022 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 19 |
allfieldsSound |
10.1002/adma.201606022 doi PQ20170721 (DE-627)OLC1995124303 (DE-599)GBVOLC1995124303 (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Chu, Zhaoqiang verfasserin aut Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim laser treatment flux‐concentration effect magnetoelectric magnetic sensors Shi, Huaduo oth Shi, Weiliang oth Liu, Guoxi oth Wu, Jingen oth Yang, Jikun oth Dong, Shuxiang oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 19 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:19 http://dx.doi.org/10.1002/adma.201606022 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 19 |
language |
English |
source |
Enthalten in Advanced materials 29(2017), 19 volume:29 year:2017 number:19 |
sourceStr |
Enthalten in Advanced materials 29(2017), 19 volume:29 year:2017 number:19 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
laser treatment flux‐concentration effect magnetoelectric magnetic sensors |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Advanced materials |
authorswithroles_txt_mv |
Chu, Zhaoqiang @@aut@@ Shi, Huaduo @@oth@@ Shi, Weiliang @@oth@@ Liu, Guoxi @@oth@@ Wu, Jingen @@oth@@ Yang, Jikun @@oth@@ Dong, Shuxiang @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130815152 |
dewey-sort |
3620 |
id |
OLC1995124303 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995124303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519014446.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/adma.201606022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995124303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995124303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">540</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1538</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chu, Zhaoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas).</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laser treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flux‐concentration effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoelectric</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic sensors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Huaduo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Weiliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Guoxi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jingen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jikun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Shuxiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced materials</subfield><subfield code="d">Weinheim : Wiley-VCH Verl., 1988</subfield><subfield code="g">29(2017), 19</subfield><subfield code="w">(DE-627)130815152</subfield><subfield code="w">(DE-600)1012489-5</subfield><subfield code="w">(DE-576)023057149</subfield><subfield code="x">0935-9648</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/adma.201606022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1538</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield></datafield></record></collection>
|
author |
Chu, Zhaoqiang |
spellingShingle |
Chu, Zhaoqiang ddc 620 ddc 540 rvk UA 1538 misc laser treatment misc flux‐concentration effect misc magnetoelectric misc magnetic sensors Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites |
authorStr |
Chu, Zhaoqiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130815152 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-9648 |
topic_title |
620 540 DE-101 540 AVZ UA 1538 AVZ rvk Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites laser treatment flux‐concentration effect magnetoelectric magnetic sensors |
topic |
ddc 620 ddc 540 rvk UA 1538 misc laser treatment misc flux‐concentration effect misc magnetoelectric misc magnetic sensors |
topic_unstemmed |
ddc 620 ddc 540 rvk UA 1538 misc laser treatment misc flux‐concentration effect misc magnetoelectric misc magnetic sensors |
topic_browse |
ddc 620 ddc 540 rvk UA 1538 misc laser treatment misc flux‐concentration effect misc magnetoelectric misc magnetic sensors |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h s hs w s ws g l gl j w jw j y jy s d sd |
hierarchy_parent_title |
Advanced materials |
hierarchy_parent_id |
130815152 |
dewey-tens |
620 - Engineering 540 - Chemistry |
hierarchy_top_title |
Advanced materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 |
title |
Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites |
ctrlnum |
(DE-627)OLC1995124303 (DE-599)GBVOLC1995124303 (PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3 (KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec |
title_full |
Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites |
author_sort |
Chu, Zhaoqiang |
journal |
Advanced materials |
journalStr |
Advanced materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Chu, Zhaoqiang |
container_volume |
29 |
class |
620 540 DE-101 540 AVZ UA 1538 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Chu, Zhaoqiang |
doi_str_mv |
10.1002/adma.201606022 |
dewey-full |
620 540 |
title_sort |
enhanced resonance magnetoelectric coupling in (1‐1) connectivity composites |
title_auth |
Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites |
abstract |
Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). |
abstractGer |
Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). |
abstract_unstemmed |
Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 |
container_issue |
19 |
title_short |
Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites |
url |
http://dx.doi.org/10.1002/adma.201606022 http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract |
remote_bool |
false |
author2 |
Shi, Huaduo Shi, Weiliang Liu, Guoxi Wu, Jingen Yang, Jikun Dong, Shuxiang |
author2Str |
Shi, Huaduo Shi, Weiliang Liu, Guoxi Wu, Jingen Yang, Jikun Dong, Shuxiang |
ppnlink |
130815152 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1002/adma.201606022 |
up_date |
2024-07-03T20:33:00.748Z |
_version_ |
1803591384563712000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995124303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519014446.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/adma.201606022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995124303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995124303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)s1468-8ec4932817f067f823c170f6515a8cfab81eabca0374b94c6e76d38c85313e2d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0178503620170000029001900000enhancedresonancemagnetoelectriccouplingin11connec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">540</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1538</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chu, Zhaoqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Resonance Magnetoelectric Coupling in (1‐1) Connectivity Composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bulk‐magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3‐0), (3‐1), (2‐2), and (2‐1) connectivity are proposed in a bid to realize strong ME coupling for next‐generation electronic‐device applications. Here, 1D (1‐1) connectivity ME composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 (PMN‐PT) single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas) and operating in L‐T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm −1 Oe −1 , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 −13 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic‐circuit and equivalent‐circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser‐treated Metglas alloy due to nanocrystallization and the strong magnetic‐flux‐concentration effect in (1‐1) configuration composites. A seven‐times‐higher magnetoelectric coupling (≈7000 V cm −1 Oe −1 ) than the best result published previously and also a superhigh magnetic sensitivity (1.35 × 10 −13 T) at resonance at room temperature are found from 1D (1‐1) connectivity magnetoelectric composites consisting of a [011]‐oriented Pb(Mg,Nb)O 3 ‐PbTiO 3 single‐crystal fiber laminated with laser‐treated amorphous FeBSi alloy (Metglas).</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laser treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flux‐concentration effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoelectric</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic sensors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Huaduo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Weiliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Guoxi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jingen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jikun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Shuxiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced materials</subfield><subfield code="d">Weinheim : Wiley-VCH Verl., 1988</subfield><subfield code="g">29(2017), 19</subfield><subfield code="w">(DE-627)130815152</subfield><subfield code="w">(DE-600)1012489-5</subfield><subfield code="w">(DE-576)023057149</subfield><subfield code="x">0935-9648</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/adma.201606022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/adma.201606022/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1538</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield></datafield></record></collection>
|
score |
7.4024897 |