Unusual active site location and catalytic apparatus in a glycoside hydrolase family
The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate act...
Ausführliche Beschreibung
Autor*in: |
Munoz-Munoz, Jose [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 114(2017), 19, Seite 4936 |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2017 ; number:19 ; pages:4936 |
Links: |
---|
DOI / URN: |
10.1073/pnas.1701130114 |
---|
Katalog-ID: |
OLC1995553522 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995553522 | ||
003 | DE-627 | ||
005 | 20230715062534.0 | ||
007 | tu | ||
008 | 170721s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1701130114 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC1995553522 | ||
035 | |a (DE-599)GBVOLC1995553522 | ||
035 | |a (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 | ||
035 | |a (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DE-101 |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 1 | |a Munoz-Munoz, Jose |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unusual active site location and catalytic apparatus in a glycoside hydrolase family |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. | ||
650 | 4 | |a Glycosides | |
650 | 4 | |a Enzymes | |
650 | 4 | |a Hydrolases | |
650 | 4 | |a Microbiota (Symbiotic organisms) | |
650 | 4 | |a Research | |
650 | 4 | |a Hypothesis | |
650 | 4 | |a Usage | |
650 | 4 | |a Reaction products | |
650 | 4 | |a Bacteria | |
650 | 4 | |a Growth hormone | |
650 | 4 | |a Amino acids | |
650 | 4 | |a Residues | |
650 | 4 | |a a-L-Rhamnosidase | |
650 | 4 | |a Nutrients | |
650 | 4 | |a Site location | |
650 | 4 | |a Polysaccharides | |
650 | 4 | |a Mutagenesis | |
650 | 4 | |a Glycoside hydrolase | |
650 | 4 | |a Digestive tract | |
650 | 4 | |a Imidazole | |
650 | 4 | |a Histidine | |
650 | 4 | |a Hydrolase | |
650 | 4 | |a Crystal structure | |
650 | 4 | |a Carboxylic acids | |
650 | 4 | |a Microorganisms | |
650 | 4 | |a Carbohydrates | |
650 | 4 | |a L-Rhamnosidase | |
650 | 4 | |a Rhamnose | |
700 | 1 | |a Cartmell, Alan |4 oth | |
700 | 1 | |a Terrapon, Nicolas |4 oth | |
700 | 1 | |a Henrissat, Bernard |4 oth | |
700 | 1 | |a Gilbert, Harry J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 114(2017), 19, Seite 4936 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:114 |g year:2017 |g number:19 |g pages:4936 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1701130114 |3 Volltext |
856 | 4 | 2 | |u https://search.proquest.com/docview/1903952690 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 114 |j 2017 |e 19 |h 4936 |
author_variant |
j m m jmm |
---|---|
matchkey_str |
article:00278424:2017----::nsaatvstlctoadaayiaprtsngyo |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1073/pnas.1701130114 doi PQ20170901 (DE-627)OLC1995553522 (DE-599)GBVOLC1995553522 (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Munoz-Munoz, Jose verfasserin aut Unusual active site location and catalytic apparatus in a glycoside hydrolase family 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose Cartmell, Alan oth Terrapon, Nicolas oth Henrissat, Bernard oth Gilbert, Harry J oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 19, Seite 4936 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:19 pages:4936 http://dx.doi.org/10.1073/pnas.1701130114 Volltext https://search.proquest.com/docview/1903952690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 19 4936 |
spelling |
10.1073/pnas.1701130114 doi PQ20170901 (DE-627)OLC1995553522 (DE-599)GBVOLC1995553522 (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Munoz-Munoz, Jose verfasserin aut Unusual active site location and catalytic apparatus in a glycoside hydrolase family 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose Cartmell, Alan oth Terrapon, Nicolas oth Henrissat, Bernard oth Gilbert, Harry J oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 19, Seite 4936 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:19 pages:4936 http://dx.doi.org/10.1073/pnas.1701130114 Volltext https://search.proquest.com/docview/1903952690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 19 4936 |
allfields_unstemmed |
10.1073/pnas.1701130114 doi PQ20170901 (DE-627)OLC1995553522 (DE-599)GBVOLC1995553522 (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Munoz-Munoz, Jose verfasserin aut Unusual active site location and catalytic apparatus in a glycoside hydrolase family 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose Cartmell, Alan oth Terrapon, Nicolas oth Henrissat, Bernard oth Gilbert, Harry J oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 19, Seite 4936 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:19 pages:4936 http://dx.doi.org/10.1073/pnas.1701130114 Volltext https://search.proquest.com/docview/1903952690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 19 4936 |
allfieldsGer |
10.1073/pnas.1701130114 doi PQ20170901 (DE-627)OLC1995553522 (DE-599)GBVOLC1995553522 (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Munoz-Munoz, Jose verfasserin aut Unusual active site location and catalytic apparatus in a glycoside hydrolase family 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose Cartmell, Alan oth Terrapon, Nicolas oth Henrissat, Bernard oth Gilbert, Harry J oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 19, Seite 4936 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:19 pages:4936 http://dx.doi.org/10.1073/pnas.1701130114 Volltext https://search.proquest.com/docview/1903952690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 19 4936 |
allfieldsSound |
10.1073/pnas.1701130114 doi PQ20170901 (DE-627)OLC1995553522 (DE-599)GBVOLC1995553522 (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag DE-627 ger DE-627 rakwb eng 500 DE-101 570 AVZ LING fid BIODIV fid Munoz-Munoz, Jose verfasserin aut Unusual active site location and catalytic apparatus in a glycoside hydrolase family 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose Cartmell, Alan oth Terrapon, Nicolas oth Henrissat, Bernard oth Gilbert, Harry J oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 114(2017), 19, Seite 4936 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:114 year:2017 number:19 pages:4936 http://dx.doi.org/10.1073/pnas.1701130114 Volltext https://search.proquest.com/docview/1903952690 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 114 2017 19 4936 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 114(2017), 19, Seite 4936 volume:114 year:2017 number:19 pages:4936 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 114(2017), 19, Seite 4936 volume:114 year:2017 number:19 pages:4936 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Munoz-Munoz, Jose @@aut@@ Cartmell, Alan @@oth@@ Terrapon, Nicolas @@oth@@ Henrissat, Bernard @@oth@@ Gilbert, Harry J @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC1995553522 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995553522</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715062534.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1701130114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995553522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995553522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Munoz-Munoz, Jose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unusual active site location and catalytic apparatus in a glycoside hydrolase family</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycosides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enzymes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrolases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiota (Symbiotic organisms)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypothesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth hormone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a-L-Rhamnosidase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Site location</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polysaccharides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutagenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycoside hydrolase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digestive tract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imidazole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histidine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrolase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carboxylic acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microorganisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbohydrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-Rhamnosidase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rhamnose</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cartmell, Alan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terrapon, Nicolas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henrissat, Bernard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbert, Harry J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">114(2017), 19, Seite 4936</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:4936</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1701130114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1903952690</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield><subfield code="h">4936</subfield></datafield></record></collection>
|
author |
Munoz-Munoz, Jose |
spellingShingle |
Munoz-Munoz, Jose ddc 500 ddc 570 fid LING fid BIODIV misc Glycosides misc Enzymes misc Hydrolases misc Microbiota (Symbiotic organisms) misc Research misc Hypothesis misc Usage misc Reaction products misc Bacteria misc Growth hormone misc Amino acids misc Residues misc a-L-Rhamnosidase misc Nutrients misc Site location misc Polysaccharides misc Mutagenesis misc Glycoside hydrolase misc Digestive tract misc Imidazole misc Histidine misc Hydrolase misc Crystal structure misc Carboxylic acids misc Microorganisms misc Carbohydrates misc L-Rhamnosidase misc Rhamnose Unusual active site location and catalytic apparatus in a glycoside hydrolase family |
authorStr |
Munoz-Munoz, Jose |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DE-101 570 AVZ LING fid BIODIV fid Unusual active site location and catalytic apparatus in a glycoside hydrolase family Glycosides Enzymes Hydrolases Microbiota (Symbiotic organisms) Research Hypothesis Usage Reaction products Bacteria Growth hormone Amino acids Residues a-L-Rhamnosidase Nutrients Site location Polysaccharides Mutagenesis Glycoside hydrolase Digestive tract Imidazole Histidine Hydrolase Crystal structure Carboxylic acids Microorganisms Carbohydrates L-Rhamnosidase Rhamnose |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc Glycosides misc Enzymes misc Hydrolases misc Microbiota (Symbiotic organisms) misc Research misc Hypothesis misc Usage misc Reaction products misc Bacteria misc Growth hormone misc Amino acids misc Residues misc a-L-Rhamnosidase misc Nutrients misc Site location misc Polysaccharides misc Mutagenesis misc Glycoside hydrolase misc Digestive tract misc Imidazole misc Histidine misc Hydrolase misc Crystal structure misc Carboxylic acids misc Microorganisms misc Carbohydrates misc L-Rhamnosidase misc Rhamnose |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc Glycosides misc Enzymes misc Hydrolases misc Microbiota (Symbiotic organisms) misc Research misc Hypothesis misc Usage misc Reaction products misc Bacteria misc Growth hormone misc Amino acids misc Residues misc a-L-Rhamnosidase misc Nutrients misc Site location misc Polysaccharides misc Mutagenesis misc Glycoside hydrolase misc Digestive tract misc Imidazole misc Histidine misc Hydrolase misc Crystal structure misc Carboxylic acids misc Microorganisms misc Carbohydrates misc L-Rhamnosidase misc Rhamnose |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc Glycosides misc Enzymes misc Hydrolases misc Microbiota (Symbiotic organisms) misc Research misc Hypothesis misc Usage misc Reaction products misc Bacteria misc Growth hormone misc Amino acids misc Residues misc a-L-Rhamnosidase misc Nutrients misc Site location misc Polysaccharides misc Mutagenesis misc Glycoside hydrolase misc Digestive tract misc Imidazole misc Histidine misc Hydrolase misc Crystal structure misc Carboxylic acids misc Microorganisms misc Carbohydrates misc L-Rhamnosidase misc Rhamnose |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a c ac n t nt b h bh h j g hj hjg |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
Unusual active site location and catalytic apparatus in a glycoside hydrolase family |
ctrlnum |
(DE-627)OLC1995553522 (DE-599)GBVOLC1995553522 (PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150 (KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag |
title_full |
Unusual active site location and catalytic apparatus in a glycoside hydrolase family |
author_sort |
Munoz-Munoz, Jose |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4936 |
author_browse |
Munoz-Munoz, Jose |
container_volume |
114 |
class |
500 DE-101 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Munoz-Munoz, Jose |
doi_str_mv |
10.1073/pnas.1701130114 |
dewey-full |
500 570 |
title_sort |
unusual active site location and catalytic apparatus in a glycoside hydrolase family |
title_auth |
Unusual active site location and catalytic apparatus in a glycoside hydrolase family |
abstract |
The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. |
abstractGer |
The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. |
abstract_unstemmed |
The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
19 |
title_short |
Unusual active site location and catalytic apparatus in a glycoside hydrolase family |
url |
http://dx.doi.org/10.1073/pnas.1701130114 https://search.proquest.com/docview/1903952690 |
remote_bool |
false |
author2 |
Cartmell, Alan Terrapon, Nicolas Henrissat, Bernard Gilbert, Harry J |
author2Str |
Cartmell, Alan Terrapon, Nicolas Henrissat, Bernard Gilbert, Harry J |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1073/pnas.1701130114 |
up_date |
2024-07-03T22:10:29.047Z |
_version_ |
1803597516949684224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995553522</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715062534.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170721s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1701130114</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995553522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995553522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1160-ae592da50ac61fbc633e23c0802f6310cfa61710a1150a27107a5120b0f797150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920170000114001904936unusualactivesitelocationandcatalyticapparatusinag</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Munoz-Munoz, Jose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unusual active site location and catalytic apparatus in a glycoside hydrolase family</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on L-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an a-L-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved L-Rha-a1,4-D-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, a-L-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycosides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enzymes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrolases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiota (Symbiotic organisms)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypothesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction products</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth hormone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amino acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a-L-Rhamnosidase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrients</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Site location</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polysaccharides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutagenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycoside hydrolase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digestive tract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imidazole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histidine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrolase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carboxylic acids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microorganisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbohydrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-Rhamnosidase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rhamnose</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cartmell, Alan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terrapon, Nicolas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henrissat, Bernard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbert, Harry J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">114(2017), 19, Seite 4936</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:4936</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1701130114</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1903952690</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield><subfield code="h">4936</subfield></datafield></record></collection>
|
score |
7.4013834 |