An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue sim...
Ausführliche Beschreibung
Autor*in: |
Manuel, Thomas J [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on biomedical engineering - New York, NY : IEEE, 1964, 64(2017), 7, Seite 1654-1659 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2017 ; number:7 ; pages:1654-1659 |
Links: |
---|
DOI / URN: |
10.1109/TBME.2016.2627402 |
---|
Katalog-ID: |
OLC1995869716 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995869716 | ||
003 | DE-627 | ||
005 | 20230511073734.0 | ||
007 | tu | ||
008 | 170901s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TBME.2016.2627402 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1995869716 | ||
035 | |a (DE-599)GBVOLC1995869716 | ||
035 | |a (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 | ||
035 | |a (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 610 |q DE-600 |
084 | |a XA 48665 |q AVZ |2 rvk | ||
084 | |a 44.09 |2 bkl | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Manuel, Thomas J |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. | ||
650 | 4 | |a Cathodes | |
650 | 4 | |a cryosurgery | |
650 | 4 | |a electrolytic ablation | |
650 | 4 | |a Temperature measurement | |
650 | 4 | |a frozen tissue | |
650 | 4 | |a Electrochemical processes | |
650 | 4 | |a cryoelectrolytic ablation | |
650 | 4 | |a Cells (biology) | |
650 | 4 | |a cryogenics | |
650 | 4 | |a tissue ablation | |
650 | 4 | |a Surgery | |
650 | 4 | |a Anodes | |
650 | 4 | |a Cryoelectrolysis | |
650 | 4 | |a electrolysis | |
650 | 4 | |a Research | |
650 | 4 | |a Temperature measurements | |
650 | 4 | |a Biochemistry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Usage | |
700 | 1 | |a Munnangi, Pujita |4 oth | |
700 | 1 | |a Rubinsky, Boris |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on biomedical engineering |d New York, NY : IEEE, 1964 |g 64(2017), 7, Seite 1654-1659 |w (DE-627)129358452 |w (DE-600)160429-6 |w (DE-576)01473074X |x 0018-9294 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2017 |g number:7 |g pages:1654-1659 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TBME.2016.2627402 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7784754 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2410 | ||
936 | r | v | |a XA 48665 |
936 | b | k | |a 44.09 |q AVZ |
936 | b | k | |a 44.40 |q AVZ |
951 | |a AR | ||
952 | |d 64 |j 2017 |e 7 |h 1654-1659 |
author_variant |
t j m tj tjm |
---|---|
matchkey_str |
article:00189294:2017----::nlcrceitytdocyeetoyiifoep |
hierarchy_sort_str |
2017 |
bklnumber |
44.09 44.40 |
publishDate |
2017 |
allfields |
10.1109/TBME.2016.2627402 doi PQ20171228 (DE-627)OLC1995869716 (DE-599)GBVOLC1995869716 (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Manuel, Thomas J verfasserin aut An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage Munnangi, Pujita oth Rubinsky, Boris oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 64(2017), 7, Seite 1654-1659 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:64 year:2017 number:7 pages:1654-1659 http://dx.doi.org/10.1109/TBME.2016.2627402 Volltext http://ieeexplore.ieee.org/document/7784754 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_2061 GBV_ILN_2410 XA 48665 44.09 AVZ 44.40 AVZ AR 64 2017 7 1654-1659 |
spelling |
10.1109/TBME.2016.2627402 doi PQ20171228 (DE-627)OLC1995869716 (DE-599)GBVOLC1995869716 (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Manuel, Thomas J verfasserin aut An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage Munnangi, Pujita oth Rubinsky, Boris oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 64(2017), 7, Seite 1654-1659 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:64 year:2017 number:7 pages:1654-1659 http://dx.doi.org/10.1109/TBME.2016.2627402 Volltext http://ieeexplore.ieee.org/document/7784754 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_2061 GBV_ILN_2410 XA 48665 44.09 AVZ 44.40 AVZ AR 64 2017 7 1654-1659 |
allfields_unstemmed |
10.1109/TBME.2016.2627402 doi PQ20171228 (DE-627)OLC1995869716 (DE-599)GBVOLC1995869716 (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Manuel, Thomas J verfasserin aut An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage Munnangi, Pujita oth Rubinsky, Boris oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 64(2017), 7, Seite 1654-1659 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:64 year:2017 number:7 pages:1654-1659 http://dx.doi.org/10.1109/TBME.2016.2627402 Volltext http://ieeexplore.ieee.org/document/7784754 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_2061 GBV_ILN_2410 XA 48665 44.09 AVZ 44.40 AVZ AR 64 2017 7 1654-1659 |
allfieldsGer |
10.1109/TBME.2016.2627402 doi PQ20171228 (DE-627)OLC1995869716 (DE-599)GBVOLC1995869716 (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Manuel, Thomas J verfasserin aut An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage Munnangi, Pujita oth Rubinsky, Boris oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 64(2017), 7, Seite 1654-1659 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:64 year:2017 number:7 pages:1654-1659 http://dx.doi.org/10.1109/TBME.2016.2627402 Volltext http://ieeexplore.ieee.org/document/7784754 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_2061 GBV_ILN_2410 XA 48665 44.09 AVZ 44.40 AVZ AR 64 2017 7 1654-1659 |
allfieldsSound |
10.1109/TBME.2016.2627402 doi PQ20171228 (DE-627)OLC1995869716 (DE-599)GBVOLC1995869716 (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy DE-627 ger DE-627 rakwb eng 620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl Manuel, Thomas J verfasserin aut An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage Munnangi, Pujita oth Rubinsky, Boris oth Enthalten in IEEE transactions on biomedical engineering New York, NY : IEEE, 1964 64(2017), 7, Seite 1654-1659 (DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X 0018-9294 nnns volume:64 year:2017 number:7 pages:1654-1659 http://dx.doi.org/10.1109/TBME.2016.2627402 Volltext http://ieeexplore.ieee.org/document/7784754 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_2061 GBV_ILN_2410 XA 48665 44.09 AVZ 44.40 AVZ AR 64 2017 7 1654-1659 |
language |
English |
source |
Enthalten in IEEE transactions on biomedical engineering 64(2017), 7, Seite 1654-1659 volume:64 year:2017 number:7 pages:1654-1659 |
sourceStr |
Enthalten in IEEE transactions on biomedical engineering 64(2017), 7, Seite 1654-1659 volume:64 year:2017 number:7 pages:1654-1659 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on biomedical engineering |
authorswithroles_txt_mv |
Manuel, Thomas J @@aut@@ Munnangi, Pujita @@oth@@ Rubinsky, Boris @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129358452 |
dewey-sort |
3620 |
id |
OLC1995869716 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995869716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511073734.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170901s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TBME.2016.2627402</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995869716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995869716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XA 48665</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manuel, Thomas J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cathodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryosurgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrolytic ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frozen tissue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryoelectrolytic ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cells (biology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryogenics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tissue ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryoelectrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munnangi, Pujita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubinsky, Boris</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on biomedical engineering</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">64(2017), 7, Seite 1654-1659</subfield><subfield code="w">(DE-627)129358452</subfield><subfield code="w">(DE-600)160429-6</subfield><subfield code="w">(DE-576)01473074X</subfield><subfield code="x">0018-9294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1654-1659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TBME.2016.2627402</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7784754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">XA 48665</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">7</subfield><subfield code="h">1654-1659</subfield></datafield></record></collection>
|
author |
Manuel, Thomas J |
spellingShingle |
Manuel, Thomas J ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc Cathodes misc cryosurgery misc electrolytic ablation misc Temperature measurement misc frozen tissue misc Electrochemical processes misc cryoelectrolytic ablation misc Cells (biology) misc cryogenics misc tissue ablation misc Surgery misc Anodes misc Cryoelectrolysis misc electrolysis misc Research misc Temperature measurements misc Biochemistry misc Analysis misc Usage An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline |
authorStr |
Manuel, Thomas J |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358452 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9294 |
topic_title |
620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline Cathodes cryosurgery electrolytic ablation Temperature measurement frozen tissue Electrochemical processes cryoelectrolytic ablation Cells (biology) cryogenics tissue ablation Surgery Anodes Cryoelectrolysis electrolysis Research Temperature measurements Biochemistry Analysis Usage |
topic |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc Cathodes misc cryosurgery misc electrolytic ablation misc Temperature measurement misc frozen tissue misc Electrochemical processes misc cryoelectrolytic ablation misc Cells (biology) misc cryogenics misc tissue ablation misc Surgery misc Anodes misc Cryoelectrolysis misc electrolysis misc Research misc Temperature measurements misc Biochemistry misc Analysis misc Usage |
topic_unstemmed |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc Cathodes misc cryosurgery misc electrolytic ablation misc Temperature measurement misc frozen tissue misc Electrochemical processes misc cryoelectrolytic ablation misc Cells (biology) misc cryogenics misc tissue ablation misc Surgery misc Anodes misc Cryoelectrolysis misc electrolysis misc Research misc Temperature measurements misc Biochemistry misc Analysis misc Usage |
topic_browse |
ddc 620 rvk XA 48665 bkl 44.09 bkl 44.40 misc Cathodes misc cryosurgery misc electrolytic ablation misc Temperature measurement misc frozen tissue misc Electrochemical processes misc cryoelectrolytic ablation misc Cells (biology) misc cryogenics misc tissue ablation misc Surgery misc Anodes misc Cryoelectrolysis misc electrolysis misc Research misc Temperature measurements misc Biochemistry misc Analysis misc Usage |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
p m pm b r br |
hierarchy_parent_title |
IEEE transactions on biomedical engineering |
hierarchy_parent_id |
129358452 |
dewey-tens |
620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
IEEE transactions on biomedical engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358452 (DE-600)160429-6 (DE-576)01473074X |
title |
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline |
ctrlnum |
(DE-627)OLC1995869716 (DE-599)GBVOLC1995869716 (PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0 (KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy |
title_full |
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline |
author_sort |
Manuel, Thomas J |
journal |
IEEE transactions on biomedical engineering |
journalStr |
IEEE transactions on biomedical engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1654 |
author_browse |
Manuel, Thomas J |
container_volume |
64 |
class |
620 610 DE-600 XA 48665 AVZ rvk 44.09 bkl 44.40 bkl |
format_se |
Aufsätze |
author-letter |
Manuel, Thomas J |
doi_str_mv |
10.1109/TBME.2016.2627402 |
dewey-full |
620 610 |
title_sort |
electrochemistry study of cryoelectrolysis in frozen physiological saline |
title_auth |
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline |
abstract |
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. |
abstractGer |
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. |
abstract_unstemmed |
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-PHA GBV_ILN_70 GBV_ILN_2061 GBV_ILN_2410 |
container_issue |
7 |
title_short |
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline |
url |
http://dx.doi.org/10.1109/TBME.2016.2627402 http://ieeexplore.ieee.org/document/7784754 |
remote_bool |
false |
author2 |
Munnangi, Pujita Rubinsky, Boris |
author2Str |
Munnangi, Pujita Rubinsky, Boris |
ppnlink |
129358452 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TBME.2016.2627402 |
up_date |
2024-07-03T23:01:05.726Z |
_version_ |
1803600701138403328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995869716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511073734.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170901s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TBME.2016.2627402</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995869716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995869716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1304-c8d15c7eff62fe2eaeb6a7cf6b765758736ed1b315cefcb6bb339fa50211e23f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0037705820170000064000701654electrochemistrystudyofcryoelectrolysisinfrozenphy</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">610</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XA 48665</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manuel, Thomas J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cathodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryosurgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrolytic ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frozen tissue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryoelectrolytic ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cells (biology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cryogenics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tissue ablation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryoelectrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrolysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munnangi, Pujita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubinsky, Boris</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on biomedical engineering</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">64(2017), 7, Seite 1654-1659</subfield><subfield code="w">(DE-627)129358452</subfield><subfield code="w">(DE-600)160429-6</subfield><subfield code="w">(DE-576)01473074X</subfield><subfield code="x">0018-9294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1654-1659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TBME.2016.2627402</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7784754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2410</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">XA 48665</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">7</subfield><subfield code="h">1654-1659</subfield></datafield></record></collection>
|
score |
7.401043 |