On injective dimension of F‐finite F‐modules and holonomic D‐modules
We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐modul...
Ausführliche Beschreibung
Autor*in: |
Zhang, Wenliang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 London Mathematical Society |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: The bulletin of the London Mathematical Society - Oxford : Oxford Univ. Press, 1969, 49(2017), 4, Seite 593-603 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2017 ; number:4 ; pages:593-603 |
Links: |
---|
DOI / URN: |
10.1112/blms.12050 |
---|
Katalog-ID: |
OLC1995909238 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1995909238 | ||
003 | DE-627 | ||
005 | 20220216185940.0 | ||
007 | tu | ||
008 | 170901s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1112/blms.12050 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1995909238 | ||
035 | |a (DE-599)GBVOLC1995909238 | ||
035 | |a (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 | ||
035 | |a (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a SA 6660 |q AVZ |2 rvk | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Zhang, Wenliang |e verfasserin |4 aut | |
245 | 1 | 0 | |a On injective dimension of F‐finite F‐modules and holonomic D‐modules |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . | ||
540 | |a Nutzungsrecht: © 2017 London Mathematical Society | ||
650 | 4 | |a 13D05 | |
650 | 4 | |a 13A35 | |
650 | 4 | |a 13N10 (primary) | |
650 | 4 | |a Commutative Algebra | |
650 | 4 | |a Mathematics | |
773 | 0 | 8 | |i Enthalten in |t The bulletin of the London Mathematical Society |d Oxford : Oxford Univ. Press, 1969 |g 49(2017), 4, Seite 593-603 |w (DE-627)129067202 |w (DE-600)1352-3 |w (DE-576)01439863X |x 0024-6093 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2017 |g number:4 |g pages:593-603 |
856 | 4 | 1 | |u http://dx.doi.org/10.1112/blms.12050 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract |
856 | 4 | 2 | |u http://arxiv.org/abs/1606.00536 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 6660 |
936 | b | k | |a 31.00 |q AVZ |
951 | |a AR | ||
952 | |d 49 |j 2017 |e 4 |h 593-603 |
author_variant |
w z wz |
---|---|
matchkey_str |
article:00246093:2017----::nnetvdmninffntfoueado |
hierarchy_sort_str |
2017 |
bklnumber |
31.00 |
publishDate |
2017 |
allfields |
10.1112/blms.12050 doi PQ20171228 (DE-627)OLC1995909238 (DE-599)GBVOLC1995909238 (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd DE-627 ger DE-627 rakwb eng 510 DE-600 SA 6660 AVZ rvk 31.00 bkl Zhang, Wenliang verfasserin aut On injective dimension of F‐finite F‐modules and holonomic D‐modules 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . Nutzungsrecht: © 2017 London Mathematical Society 13D05 13A35 13N10 (primary) Commutative Algebra Mathematics Enthalten in The bulletin of the London Mathematical Society Oxford : Oxford Univ. Press, 1969 49(2017), 4, Seite 593-603 (DE-627)129067202 (DE-600)1352-3 (DE-576)01439863X 0024-6093 nnns volume:49 year:2017 number:4 pages:593-603 http://dx.doi.org/10.1112/blms.12050 Volltext http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract http://arxiv.org/abs/1606.00536 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4318 GBV_ILN_4700 SA 6660 31.00 AVZ AR 49 2017 4 593-603 |
spelling |
10.1112/blms.12050 doi PQ20171228 (DE-627)OLC1995909238 (DE-599)GBVOLC1995909238 (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd DE-627 ger DE-627 rakwb eng 510 DE-600 SA 6660 AVZ rvk 31.00 bkl Zhang, Wenliang verfasserin aut On injective dimension of F‐finite F‐modules and holonomic D‐modules 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . Nutzungsrecht: © 2017 London Mathematical Society 13D05 13A35 13N10 (primary) Commutative Algebra Mathematics Enthalten in The bulletin of the London Mathematical Society Oxford : Oxford Univ. Press, 1969 49(2017), 4, Seite 593-603 (DE-627)129067202 (DE-600)1352-3 (DE-576)01439863X 0024-6093 nnns volume:49 year:2017 number:4 pages:593-603 http://dx.doi.org/10.1112/blms.12050 Volltext http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract http://arxiv.org/abs/1606.00536 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4318 GBV_ILN_4700 SA 6660 31.00 AVZ AR 49 2017 4 593-603 |
allfields_unstemmed |
10.1112/blms.12050 doi PQ20171228 (DE-627)OLC1995909238 (DE-599)GBVOLC1995909238 (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd DE-627 ger DE-627 rakwb eng 510 DE-600 SA 6660 AVZ rvk 31.00 bkl Zhang, Wenliang verfasserin aut On injective dimension of F‐finite F‐modules and holonomic D‐modules 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . Nutzungsrecht: © 2017 London Mathematical Society 13D05 13A35 13N10 (primary) Commutative Algebra Mathematics Enthalten in The bulletin of the London Mathematical Society Oxford : Oxford Univ. Press, 1969 49(2017), 4, Seite 593-603 (DE-627)129067202 (DE-600)1352-3 (DE-576)01439863X 0024-6093 nnns volume:49 year:2017 number:4 pages:593-603 http://dx.doi.org/10.1112/blms.12050 Volltext http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract http://arxiv.org/abs/1606.00536 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4318 GBV_ILN_4700 SA 6660 31.00 AVZ AR 49 2017 4 593-603 |
allfieldsGer |
10.1112/blms.12050 doi PQ20171228 (DE-627)OLC1995909238 (DE-599)GBVOLC1995909238 (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd DE-627 ger DE-627 rakwb eng 510 DE-600 SA 6660 AVZ rvk 31.00 bkl Zhang, Wenliang verfasserin aut On injective dimension of F‐finite F‐modules and holonomic D‐modules 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . Nutzungsrecht: © 2017 London Mathematical Society 13D05 13A35 13N10 (primary) Commutative Algebra Mathematics Enthalten in The bulletin of the London Mathematical Society Oxford : Oxford Univ. Press, 1969 49(2017), 4, Seite 593-603 (DE-627)129067202 (DE-600)1352-3 (DE-576)01439863X 0024-6093 nnns volume:49 year:2017 number:4 pages:593-603 http://dx.doi.org/10.1112/blms.12050 Volltext http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract http://arxiv.org/abs/1606.00536 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4318 GBV_ILN_4700 SA 6660 31.00 AVZ AR 49 2017 4 593-603 |
allfieldsSound |
10.1112/blms.12050 doi PQ20171228 (DE-627)OLC1995909238 (DE-599)GBVOLC1995909238 (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd DE-627 ger DE-627 rakwb eng 510 DE-600 SA 6660 AVZ rvk 31.00 bkl Zhang, Wenliang verfasserin aut On injective dimension of F‐finite F‐modules and holonomic D‐modules 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . Nutzungsrecht: © 2017 London Mathematical Society 13D05 13A35 13N10 (primary) Commutative Algebra Mathematics Enthalten in The bulletin of the London Mathematical Society Oxford : Oxford Univ. Press, 1969 49(2017), 4, Seite 593-603 (DE-627)129067202 (DE-600)1352-3 (DE-576)01439863X 0024-6093 nnns volume:49 year:2017 number:4 pages:593-603 http://dx.doi.org/10.1112/blms.12050 Volltext http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract http://arxiv.org/abs/1606.00536 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4318 GBV_ILN_4700 SA 6660 31.00 AVZ AR 49 2017 4 593-603 |
language |
English |
source |
Enthalten in The bulletin of the London Mathematical Society 49(2017), 4, Seite 593-603 volume:49 year:2017 number:4 pages:593-603 |
sourceStr |
Enthalten in The bulletin of the London Mathematical Society 49(2017), 4, Seite 593-603 volume:49 year:2017 number:4 pages:593-603 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
13D05 13A35 13N10 (primary) Commutative Algebra Mathematics |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The bulletin of the London Mathematical Society |
authorswithroles_txt_mv |
Zhang, Wenliang @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129067202 |
dewey-sort |
3510 |
id |
OLC1995909238 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995909238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216185940.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170901s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1112/blms.12050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995909238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995909238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Wenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On injective dimension of F‐finite F‐modules and holonomic D‐modules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) .</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 London Mathematical Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">13D05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">13A35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">13N10 (primary)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The bulletin of the London Mathematical Society</subfield><subfield code="d">Oxford : Oxford Univ. Press, 1969</subfield><subfield code="g">49(2017), 4, Seite 593-603</subfield><subfield code="w">(DE-627)129067202</subfield><subfield code="w">(DE-600)1352-3</subfield><subfield code="w">(DE-576)01439863X</subfield><subfield code="x">0024-6093</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:593-603</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1112/blms.12050</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1606.00536</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6660</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">593-603</subfield></datafield></record></collection>
|
author |
Zhang, Wenliang |
spellingShingle |
Zhang, Wenliang ddc 510 rvk SA 6660 bkl 31.00 misc 13D05 misc 13A35 misc 13N10 (primary) misc Commutative Algebra misc Mathematics On injective dimension of F‐finite F‐modules and holonomic D‐modules |
authorStr |
Zhang, Wenliang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129067202 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0024-6093 |
topic_title |
510 DE-600 SA 6660 AVZ rvk 31.00 bkl On injective dimension of F‐finite F‐modules and holonomic D‐modules 13D05 13A35 13N10 (primary) Commutative Algebra Mathematics |
topic |
ddc 510 rvk SA 6660 bkl 31.00 misc 13D05 misc 13A35 misc 13N10 (primary) misc Commutative Algebra misc Mathematics |
topic_unstemmed |
ddc 510 rvk SA 6660 bkl 31.00 misc 13D05 misc 13A35 misc 13N10 (primary) misc Commutative Algebra misc Mathematics |
topic_browse |
ddc 510 rvk SA 6660 bkl 31.00 misc 13D05 misc 13A35 misc 13N10 (primary) misc Commutative Algebra misc Mathematics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The bulletin of the London Mathematical Society |
hierarchy_parent_id |
129067202 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The bulletin of the London Mathematical Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129067202 (DE-600)1352-3 (DE-576)01439863X |
title |
On injective dimension of F‐finite F‐modules and holonomic D‐modules |
ctrlnum |
(DE-627)OLC1995909238 (DE-599)GBVOLC1995909238 (PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30 (KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd |
title_full |
On injective dimension of F‐finite F‐modules and holonomic D‐modules |
author_sort |
Zhang, Wenliang |
journal |
The bulletin of the London Mathematical Society |
journalStr |
The bulletin of the London Mathematical Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
593 |
author_browse |
Zhang, Wenliang |
container_volume |
49 |
class |
510 DE-600 SA 6660 AVZ rvk 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Zhang, Wenliang |
doi_str_mv |
10.1112/blms.12050 |
dewey-full |
510 |
title_sort |
on injective dimension of f‐finite f‐modules and holonomic d‐modules |
title_auth |
On injective dimension of F‐finite F‐modules and holonomic D‐modules |
abstract |
We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . |
abstractGer |
We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . |
abstract_unstemmed |
We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) . |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4116 GBV_ILN_4318 GBV_ILN_4700 |
container_issue |
4 |
title_short |
On injective dimension of F‐finite F‐modules and holonomic D‐modules |
url |
http://dx.doi.org/10.1112/blms.12050 http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract http://arxiv.org/abs/1606.00536 |
remote_bool |
false |
ppnlink |
129067202 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1112/blms.12050 |
up_date |
2024-07-03T23:09:17.253Z |
_version_ |
1803601216541818880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1995909238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216185940.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170901s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1112/blms.12050</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1995909238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1995909238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1160-535b5d30aa78dc14f3798de28bb3fababf590b2f899b7f0d5cba6eed17e121e30</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0047210720170000049000400593oninjectivedimensionofffinitefmodulesandholonomicd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Wenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On injective dimension of F‐finite F‐modules and holonomic D‐modules</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigate injective dimension of F ‐finite F ‐modules in characteristic p and holonomic D ‐modules in characteristic 0. One of our main results is the following. If either (a) R is a regular ring of finite type over an infinite field of characteristic p > 0 and M is an F R ‐finite F R ‐module; or (b) R = k [ x 1 , … , x n ] , where k is a field of characteristic 0 and M is a holonomic D ( R , k ) ‐module. then inj.dim R ( M ) = dim ( Supp R ( M ) ) .</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 London Mathematical Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">13D05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">13A35</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">13N10 (primary)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The bulletin of the London Mathematical Society</subfield><subfield code="d">Oxford : Oxford Univ. Press, 1969</subfield><subfield code="g">49(2017), 4, Seite 593-603</subfield><subfield code="w">(DE-627)129067202</subfield><subfield code="w">(DE-600)1352-3</subfield><subfield code="w">(DE-576)01439863X</subfield><subfield code="x">0024-6093</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:593-603</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1112/blms.12050</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1112/blms.12050/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1606.00536</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6660</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="h">593-603</subfield></datafield></record></collection>
|
score |
7.400276 |