Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide se...
Ausführliche Beschreibung
Autor*in: |
Lee, Minkyung [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Advanced materials - Weinheim : Wiley-VCH Verl., 1988, 29(2017), 28 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2017 ; number:28 |
Links: |
---|
DOI / URN: |
10.1002/adma.201700951 |
---|
Katalog-ID: |
OLC1996279106 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996279106 | ||
003 | DE-627 | ||
005 | 20230518082910.0 | ||
007 | tu | ||
008 | 170901s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/adma.201700951 |2 doi | |
028 | 5 | 2 | |a PQ20170901 |
035 | |a (DE-627)OLC1996279106 | ||
035 | |a (DE-599)GBVOLC1996279106 | ||
035 | |a (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 | ||
035 | |a (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 540 |q DE-101 |
082 | 0 | 4 | |a 540 |q AVZ |
084 | |a UA 1538 |q AVZ |2 rvk | ||
100 | 1 | |a Lee, Minkyung |e verfasserin |4 aut | |
245 | 1 | 0 | |a Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. | ||
540 | |a Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | ||
650 | 4 | |a photonic neuromorphic devices | |
650 | 4 | |a persistent photoconductivity | |
650 | 4 | |a amorphous oxide semiconductors | |
650 | 4 | |a synaptic devices | |
700 | 1 | |a Lee, Woobin |4 oth | |
700 | 1 | |a Choi, Seungbeom |4 oth | |
700 | 1 | |a Jo, Jeong‐Wan |4 oth | |
700 | 1 | |a Kim, Jaekyun |4 oth | |
700 | 1 | |a Park, Sung Kyu |4 oth | |
700 | 1 | |a Kim, Yong‐Hoon |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Advanced materials |d Weinheim : Wiley-VCH Verl., 1988 |g 29(2017), 28 |w (DE-627)130815152 |w (DE-600)1012489-5 |w (DE-576)023057149 |x 0935-9648 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2017 |g number:28 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/adma.201700951 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_4306 | ||
936 | r | v | |a UA 1538 |
951 | |a AR | ||
952 | |d 29 |j 2017 |e 28 |
author_variant |
m l ml |
---|---|
matchkey_str |
article:09359648:2017----::riisiepooinuoopidvcssnpooyaiaoposxdsmcnutradh |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/adma.201700951 doi PQ20170901 (DE-627)OLC1996279106 (DE-599)GBVOLC1996279106 (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Lee, Minkyung verfasserin aut Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices Lee, Woobin oth Choi, Seungbeom oth Jo, Jeong‐Wan oth Kim, Jaekyun oth Park, Sung Kyu oth Kim, Yong‐Hoon oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 28 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:28 http://dx.doi.org/10.1002/adma.201700951 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 28 |
spelling |
10.1002/adma.201700951 doi PQ20170901 (DE-627)OLC1996279106 (DE-599)GBVOLC1996279106 (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Lee, Minkyung verfasserin aut Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices Lee, Woobin oth Choi, Seungbeom oth Jo, Jeong‐Wan oth Kim, Jaekyun oth Park, Sung Kyu oth Kim, Yong‐Hoon oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 28 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:28 http://dx.doi.org/10.1002/adma.201700951 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 28 |
allfields_unstemmed |
10.1002/adma.201700951 doi PQ20170901 (DE-627)OLC1996279106 (DE-599)GBVOLC1996279106 (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Lee, Minkyung verfasserin aut Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices Lee, Woobin oth Choi, Seungbeom oth Jo, Jeong‐Wan oth Kim, Jaekyun oth Park, Sung Kyu oth Kim, Yong‐Hoon oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 28 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:28 http://dx.doi.org/10.1002/adma.201700951 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 28 |
allfieldsGer |
10.1002/adma.201700951 doi PQ20170901 (DE-627)OLC1996279106 (DE-599)GBVOLC1996279106 (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Lee, Minkyung verfasserin aut Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices Lee, Woobin oth Choi, Seungbeom oth Jo, Jeong‐Wan oth Kim, Jaekyun oth Park, Sung Kyu oth Kim, Yong‐Hoon oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 28 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:28 http://dx.doi.org/10.1002/adma.201700951 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 28 |
allfieldsSound |
10.1002/adma.201700951 doi PQ20170901 (DE-627)OLC1996279106 (DE-599)GBVOLC1996279106 (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto DE-627 ger DE-627 rakwb eng 620 540 DE-101 540 AVZ UA 1538 AVZ rvk Lee, Minkyung verfasserin aut Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices Lee, Woobin oth Choi, Seungbeom oth Jo, Jeong‐Wan oth Kim, Jaekyun oth Park, Sung Kyu oth Kim, Yong‐Hoon oth Enthalten in Advanced materials Weinheim : Wiley-VCH Verl., 1988 29(2017), 28 (DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 0935-9648 nnns volume:29 year:2017 number:28 http://dx.doi.org/10.1002/adma.201700951 Volltext http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 UA 1538 AR 29 2017 28 |
language |
English |
source |
Enthalten in Advanced materials 29(2017), 28 volume:29 year:2017 number:28 |
sourceStr |
Enthalten in Advanced materials 29(2017), 28 volume:29 year:2017 number:28 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Advanced materials |
authorswithroles_txt_mv |
Lee, Minkyung @@aut@@ Lee, Woobin @@oth@@ Choi, Seungbeom @@oth@@ Jo, Jeong‐Wan @@oth@@ Kim, Jaekyun @@oth@@ Park, Sung Kyu @@oth@@ Kim, Yong‐Hoon @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130815152 |
dewey-sort |
3620 |
id |
OLC1996279106 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996279106</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518082910.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170901s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/adma.201700951</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996279106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996279106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">540</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1538</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Minkyung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photonic neuromorphic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">persistent photoconductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amorphous oxide semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synaptic devices</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Woobin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Seungbeom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jo, Jeong‐Wan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Jaekyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Sung Kyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Yong‐Hoon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced materials</subfield><subfield code="d">Weinheim : Wiley-VCH Verl., 1988</subfield><subfield code="g">29(2017), 28</subfield><subfield code="w">(DE-627)130815152</subfield><subfield code="w">(DE-600)1012489-5</subfield><subfield code="w">(DE-576)023057149</subfield><subfield code="x">0935-9648</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:28</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/adma.201700951</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1538</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">28</subfield></datafield></record></collection>
|
author |
Lee, Minkyung |
spellingShingle |
Lee, Minkyung ddc 620 ddc 540 rvk UA 1538 misc photonic neuromorphic devices misc persistent photoconductivity misc amorphous oxide semiconductors misc synaptic devices Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
authorStr |
Lee, Minkyung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130815152 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0935-9648 |
topic_title |
620 540 DE-101 540 AVZ UA 1538 AVZ rvk Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity photonic neuromorphic devices persistent photoconductivity amorphous oxide semiconductors synaptic devices |
topic |
ddc 620 ddc 540 rvk UA 1538 misc photonic neuromorphic devices misc persistent photoconductivity misc amorphous oxide semiconductors misc synaptic devices |
topic_unstemmed |
ddc 620 ddc 540 rvk UA 1538 misc photonic neuromorphic devices misc persistent photoconductivity misc amorphous oxide semiconductors misc synaptic devices |
topic_browse |
ddc 620 ddc 540 rvk UA 1538 misc photonic neuromorphic devices misc persistent photoconductivity misc amorphous oxide semiconductors misc synaptic devices |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w l wl s c sc j j jj j k jk s k p sk skp y k yk |
hierarchy_parent_title |
Advanced materials |
hierarchy_parent_id |
130815152 |
dewey-tens |
620 - Engineering 540 - Chemistry |
hierarchy_top_title |
Advanced materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130815152 (DE-600)1012489-5 (DE-576)023057149 |
title |
Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
ctrlnum |
(DE-627)OLC1996279106 (DE-599)GBVOLC1996279106 (PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3 (KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto |
title_full |
Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
author_sort |
Lee, Minkyung |
journal |
Advanced materials |
journalStr |
Advanced materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Lee, Minkyung |
container_volume |
29 |
class |
620 540 DE-101 540 AVZ UA 1538 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Lee, Minkyung |
doi_str_mv |
10.1002/adma.201700951 |
dewey-full |
620 540 |
title_sort |
brain‐inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity |
title_auth |
Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
abstract |
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. |
abstractGer |
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. |
abstract_unstemmed |
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_95 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2095 GBV_ILN_4306 |
container_issue |
28 |
title_short |
Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
url |
http://dx.doi.org/10.1002/adma.201700951 http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract |
remote_bool |
false |
author2 |
Lee, Woobin Choi, Seungbeom Jo, Jeong‐Wan Kim, Jaekyun Park, Sung Kyu Kim, Yong‐Hoon |
author2Str |
Lee, Woobin Choi, Seungbeom Jo, Jeong‐Wan Kim, Jaekyun Park, Sung Kyu Kim, Yong‐Hoon |
ppnlink |
130815152 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1002/adma.201700951 |
up_date |
2024-07-04T00:16:29.367Z |
_version_ |
1803605444523982848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996279106</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518082910.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">170901s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/adma.201700951</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20170901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996279106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996279106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1151-a716b78ec519349adccfd5b02b7d62fedf71c0d92bc396e59839983193ec1c9b3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0178503620170000029002800000braininspiredphotonicneuromorphicdevicesusingphoto</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">540</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1538</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Minkyung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photonic neuromorphic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">persistent photoconductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amorphous oxide semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synaptic devices</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Woobin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Seungbeom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jo, Jeong‐Wan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Jaekyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Sung Kyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Yong‐Hoon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advanced materials</subfield><subfield code="d">Weinheim : Wiley-VCH Verl., 1988</subfield><subfield code="g">29(2017), 28</subfield><subfield code="w">(DE-627)130815152</subfield><subfield code="w">(DE-600)1012489-5</subfield><subfield code="w">(DE-576)023057149</subfield><subfield code="x">0935-9648</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:28</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/adma.201700951</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/adma.201700951/abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1538</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2017</subfield><subfield code="e">28</subfield></datafield></record></collection>
|
score |
7.4013557 |