Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach
In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of...
Ausführliche Beschreibung
Autor*in: |
Shen, Bo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on automatic control - New York, NY : Inst., 1963, 62(2017), 9, Seite 4753-4759 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2017 ; number:9 ; pages:4753-4759 |
Links: |
---|
DOI / URN: |
10.1109/TAC.2017.2685083 |
---|
Katalog-ID: |
OLC1996733346 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996733346 | ||
003 | DE-627 | ||
005 | 20210716213143.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TAC.2017.2685083 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1996733346 | ||
035 | |a (DE-599)GBVOLC1996733346 | ||
035 | |a (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 | ||
035 | |a (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Shen, Bo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. | ||
650 | 4 | |a Stochastic processes | |
650 | 4 | |a stability of linear systems | |
650 | 4 | |a quantized systems | |
650 | 4 | |a Stability analysis | |
650 | 4 | |a Control systems | |
650 | 4 | |a sampled data control | |
650 | 4 | |a Sampled data systems | |
650 | 4 | |a Quantization (signal) | |
650 | 4 | |a Noisy sampling interval | |
650 | 4 | |a Stochastic systems | |
650 | 4 | |a Noise measurement | |
700 | 1 | |a Tan, Hailong |4 oth | |
700 | 1 | |a Wang, Zidong |4 oth | |
700 | 1 | |a Huang, Tingwen |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on automatic control |d New York, NY : Inst., 1963 |g 62(2017), 9, Seite 4753-4759 |w (DE-627)129601705 |w (DE-600)241443-0 |w (DE-576)015095320 |x 0018-9286 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2017 |g number:9 |g pages:4753-4759 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TAC.2017.2685083 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7882622 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_193 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4193 | ||
951 | |a AR | ||
952 | |d 62 |j 2017 |e 9 |h 4753-4759 |
author_variant |
b s bs |
---|---|
matchkey_str |
article:00189286:2017----::uniestrtdotofrapedtssesneniyapignevlaofu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TAC.2017.2685083 doi PQ20171125 (DE-627)OLC1996733346 (DE-599)GBVOLC1996733346 (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde DE-627 ger DE-627 rakwb eng 620 DNB Shen, Bo verfasserin aut Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement Tan, Hailong oth Wang, Zidong oth Huang, Tingwen oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 9, Seite 4753-4759 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:9 pages:4753-4759 http://dx.doi.org/10.1109/TAC.2017.2685083 Volltext http://ieeexplore.ieee.org/document/7882622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 9 4753-4759 |
spelling |
10.1109/TAC.2017.2685083 doi PQ20171125 (DE-627)OLC1996733346 (DE-599)GBVOLC1996733346 (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde DE-627 ger DE-627 rakwb eng 620 DNB Shen, Bo verfasserin aut Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement Tan, Hailong oth Wang, Zidong oth Huang, Tingwen oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 9, Seite 4753-4759 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:9 pages:4753-4759 http://dx.doi.org/10.1109/TAC.2017.2685083 Volltext http://ieeexplore.ieee.org/document/7882622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 9 4753-4759 |
allfields_unstemmed |
10.1109/TAC.2017.2685083 doi PQ20171125 (DE-627)OLC1996733346 (DE-599)GBVOLC1996733346 (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde DE-627 ger DE-627 rakwb eng 620 DNB Shen, Bo verfasserin aut Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement Tan, Hailong oth Wang, Zidong oth Huang, Tingwen oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 9, Seite 4753-4759 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:9 pages:4753-4759 http://dx.doi.org/10.1109/TAC.2017.2685083 Volltext http://ieeexplore.ieee.org/document/7882622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 9 4753-4759 |
allfieldsGer |
10.1109/TAC.2017.2685083 doi PQ20171125 (DE-627)OLC1996733346 (DE-599)GBVOLC1996733346 (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde DE-627 ger DE-627 rakwb eng 620 DNB Shen, Bo verfasserin aut Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement Tan, Hailong oth Wang, Zidong oth Huang, Tingwen oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 9, Seite 4753-4759 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:9 pages:4753-4759 http://dx.doi.org/10.1109/TAC.2017.2685083 Volltext http://ieeexplore.ieee.org/document/7882622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 9 4753-4759 |
allfieldsSound |
10.1109/TAC.2017.2685083 doi PQ20171125 (DE-627)OLC1996733346 (DE-599)GBVOLC1996733346 (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde DE-627 ger DE-627 rakwb eng 620 DNB Shen, Bo verfasserin aut Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement Tan, Hailong oth Wang, Zidong oth Huang, Tingwen oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 62(2017), 9, Seite 4753-4759 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:62 year:2017 number:9 pages:4753-4759 http://dx.doi.org/10.1109/TAC.2017.2685083 Volltext http://ieeexplore.ieee.org/document/7882622 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 62 2017 9 4753-4759 |
language |
English |
source |
Enthalten in IEEE transactions on automatic control 62(2017), 9, Seite 4753-4759 volume:62 year:2017 number:9 pages:4753-4759 |
sourceStr |
Enthalten in IEEE transactions on automatic control 62(2017), 9, Seite 4753-4759 volume:62 year:2017 number:9 pages:4753-4759 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on automatic control |
authorswithroles_txt_mv |
Shen, Bo @@aut@@ Tan, Hailong @@oth@@ Wang, Zidong @@oth@@ Huang, Tingwen @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129601705 |
dewey-sort |
3620 |
id |
OLC1996733346 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996733346</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716213143.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2017.2685083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996733346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996733346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability of linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantized systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sampled data control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampled data systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantization (signal)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noisy sampling interval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise measurement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Hailong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zidong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Tingwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">62(2017), 9, Seite 4753-4759</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:4753-4759</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2017.2685083</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7882622</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">4753-4759</subfield></datafield></record></collection>
|
author |
Shen, Bo |
spellingShingle |
Shen, Bo ddc 620 misc Stochastic processes misc stability of linear systems misc quantized systems misc Stability analysis misc Control systems misc sampled data control misc Sampled data systems misc Quantization (signal) misc Noisy sampling interval misc Stochastic systems misc Noise measurement Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach |
authorStr |
Shen, Bo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601705 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9286 |
topic_title |
620 DNB Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach Stochastic processes stability of linear systems quantized systems Stability analysis Control systems sampled data control Sampled data systems Quantization (signal) Noisy sampling interval Stochastic systems Noise measurement |
topic |
ddc 620 misc Stochastic processes misc stability of linear systems misc quantized systems misc Stability analysis misc Control systems misc sampled data control misc Sampled data systems misc Quantization (signal) misc Noisy sampling interval misc Stochastic systems misc Noise measurement |
topic_unstemmed |
ddc 620 misc Stochastic processes misc stability of linear systems misc quantized systems misc Stability analysis misc Control systems misc sampled data control misc Sampled data systems misc Quantization (signal) misc Noisy sampling interval misc Stochastic systems misc Noise measurement |
topic_browse |
ddc 620 misc Stochastic processes misc stability of linear systems misc quantized systems misc Stability analysis misc Control systems misc sampled data control misc Sampled data systems misc Quantization (signal) misc Noisy sampling interval misc Stochastic systems misc Noise measurement |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h t ht z w zw t h th |
hierarchy_parent_title |
IEEE transactions on automatic control |
hierarchy_parent_id |
129601705 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on automatic control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 |
title |
Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach |
ctrlnum |
(DE-627)OLC1996733346 (DE-599)GBVOLC1996733346 (PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140 (KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde |
title_full |
Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach |
author_sort |
Shen, Bo |
journal |
IEEE transactions on automatic control |
journalStr |
IEEE transactions on automatic control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4753 |
author_browse |
Shen, Bo |
container_volume |
62 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Shen, Bo |
doi_str_mv |
10.1109/TAC.2017.2685083 |
dewey-full |
620 |
title_sort |
quantized/saturated control for sampled-data systems under noisy sampling intervals: a confluent vandermonde matrix approach |
title_auth |
Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach |
abstract |
In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. |
abstractGer |
In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. |
abstract_unstemmed |
In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 |
container_issue |
9 |
title_short |
Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach |
url |
http://dx.doi.org/10.1109/TAC.2017.2685083 http://ieeexplore.ieee.org/document/7882622 |
remote_bool |
false |
author2 |
Tan, Hailong Wang, Zidong Huang, Tingwen |
author2Str |
Tan, Hailong Wang, Zidong Huang, Tingwen |
ppnlink |
129601705 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TAC.2017.2685083 |
up_date |
2024-07-04T01:14:45.351Z |
_version_ |
1803609110326804481 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996733346</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716213143.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2017.2685083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996733346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996733346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i654-a0de9f44ab76da1f629ca80b572ab8069341627829ce064678855538d15ba140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120170000062000904753quantizedsaturatedcontrolforsampleddatasystemsunde</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantized/Saturated Control for Sampled-Data Systems Under Noisy Sampling Intervals: A Confluent Vandermonde Matrix Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a unified framework is established to investigate both the quantized and the saturated control problems for a class of sampled-data systems under noisy sampling intervals. A random variable obeying the Erlang distribution is used to describe the noisy sampling intervals. In virtue of the matrix exponential, the sampled-data control system is transformed into an equivalent discrete-time stochastic system, and the aim of this paper is to design a quantized/saturated sampled-data controller such that the resulting discrete-time stochastic system is stochastically stable when the sampling error follows the Erlang distribution. In order to deal with the case of multiple control inputs, a confluent Vandermonde matrix approach is proposed in the design process. By using the Kronecker product operation and the matrix inequality techniques, the desired quantized/saturated controller gains are designed in terms of the solution to certain matrix inequalities. Finally, a simulation example is exploited to verify the effectiveness of the proposed design approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability of linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantized systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sampled data control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampled data systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantization (signal)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noisy sampling interval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise measurement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Hailong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zidong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Tingwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">62(2017), 9, Seite 4753-4759</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:4753-4759</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2017.2685083</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7882622</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="h">4753-4759</subfield></datafield></record></collection>
|
score |
7.4020147 |