Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation
In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural...
Ausführliche Beschreibung
Autor*in: |
Liu, Wenhui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of control - London : Taylor & Francis, 1965, 90(2017), 11, Seite 2433-16 |
---|---|
Übergeordnetes Werk: |
volume:90 ; year:2017 ; number:11 ; pages:2433-16 |
Links: |
---|
DOI / URN: |
10.1080/00207179.2016.1250162 |
---|
Katalog-ID: |
OLC1996748610 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996748610 | ||
003 | DE-627 | ||
005 | 20230715070845.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/00207179.2016.1250162 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1996748610 | ||
035 | |a (DE-599)GBVOLC1996748610 | ||
035 | |a (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 | ||
035 | |a (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Liu, Wenhui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. | ||
540 | |a Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 | ||
650 | 4 | |a Adaptive backstepping control | |
650 | 4 | |a neural networks | |
650 | 4 | |a input quantisation | |
650 | 4 | |a multiple-input and multiple-output (MIMO) | |
650 | 4 | |a pure-feedback nonlinear systems | |
700 | 1 | |a Lim, Cheng-Chew |4 oth | |
700 | 1 | |a Shi, Peng |4 oth | |
700 | 1 | |a Xu, Shengyuan |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of control |d London : Taylor & Francis, 1965 |g 90(2017), 11, Seite 2433-16 |w (DE-627)129595780 |w (DE-600)240693-7 |w (DE-576)015088804 |x 0020-7179 |7 nnns |
773 | 1 | 8 | |g volume:90 |g year:2017 |g number:11 |g pages:2433-16 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/00207179.2016.1250162 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 90 |j 2017 |e 11 |h 2433-16 |
author_variant |
w l wl |
---|---|
matchkey_str |
article:00207179:2017----::bevraetakncnrlommprfebcnnierytmwttmd |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1080/00207179.2016.1250162 doi PQ20171228 (DE-627)OLC1996748610 (DE-599)GBVOLC1996748610 (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon DE-627 ger DE-627 rakwb eng 620 DNB Liu, Wenhui verfasserin aut Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems Lim, Cheng-Chew oth Shi, Peng oth Xu, Shengyuan oth Enthalten in International journal of control London : Taylor & Francis, 1965 90(2017), 11, Seite 2433-16 (DE-627)129595780 (DE-600)240693-7 (DE-576)015088804 0020-7179 nnns volume:90 year:2017 number:11 pages:2433-16 http://dx.doi.org/10.1080/00207179.2016.1250162 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4700 AR 90 2017 11 2433-16 |
spelling |
10.1080/00207179.2016.1250162 doi PQ20171228 (DE-627)OLC1996748610 (DE-599)GBVOLC1996748610 (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon DE-627 ger DE-627 rakwb eng 620 DNB Liu, Wenhui verfasserin aut Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems Lim, Cheng-Chew oth Shi, Peng oth Xu, Shengyuan oth Enthalten in International journal of control London : Taylor & Francis, 1965 90(2017), 11, Seite 2433-16 (DE-627)129595780 (DE-600)240693-7 (DE-576)015088804 0020-7179 nnns volume:90 year:2017 number:11 pages:2433-16 http://dx.doi.org/10.1080/00207179.2016.1250162 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4700 AR 90 2017 11 2433-16 |
allfields_unstemmed |
10.1080/00207179.2016.1250162 doi PQ20171228 (DE-627)OLC1996748610 (DE-599)GBVOLC1996748610 (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon DE-627 ger DE-627 rakwb eng 620 DNB Liu, Wenhui verfasserin aut Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems Lim, Cheng-Chew oth Shi, Peng oth Xu, Shengyuan oth Enthalten in International journal of control London : Taylor & Francis, 1965 90(2017), 11, Seite 2433-16 (DE-627)129595780 (DE-600)240693-7 (DE-576)015088804 0020-7179 nnns volume:90 year:2017 number:11 pages:2433-16 http://dx.doi.org/10.1080/00207179.2016.1250162 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4700 AR 90 2017 11 2433-16 |
allfieldsGer |
10.1080/00207179.2016.1250162 doi PQ20171228 (DE-627)OLC1996748610 (DE-599)GBVOLC1996748610 (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon DE-627 ger DE-627 rakwb eng 620 DNB Liu, Wenhui verfasserin aut Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems Lim, Cheng-Chew oth Shi, Peng oth Xu, Shengyuan oth Enthalten in International journal of control London : Taylor & Francis, 1965 90(2017), 11, Seite 2433-16 (DE-627)129595780 (DE-600)240693-7 (DE-576)015088804 0020-7179 nnns volume:90 year:2017 number:11 pages:2433-16 http://dx.doi.org/10.1080/00207179.2016.1250162 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4700 AR 90 2017 11 2433-16 |
allfieldsSound |
10.1080/00207179.2016.1250162 doi PQ20171228 (DE-627)OLC1996748610 (DE-599)GBVOLC1996748610 (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon DE-627 ger DE-627 rakwb eng 620 DNB Liu, Wenhui verfasserin aut Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems Lim, Cheng-Chew oth Shi, Peng oth Xu, Shengyuan oth Enthalten in International journal of control London : Taylor & Francis, 1965 90(2017), 11, Seite 2433-16 (DE-627)129595780 (DE-600)240693-7 (DE-576)015088804 0020-7179 nnns volume:90 year:2017 number:11 pages:2433-16 http://dx.doi.org/10.1080/00207179.2016.1250162 Volltext http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4700 AR 90 2017 11 2433-16 |
language |
English |
source |
Enthalten in International journal of control 90(2017), 11, Seite 2433-16 volume:90 year:2017 number:11 pages:2433-16 |
sourceStr |
Enthalten in International journal of control 90(2017), 11, Seite 2433-16 volume:90 year:2017 number:11 pages:2433-16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of control |
authorswithroles_txt_mv |
Liu, Wenhui @@aut@@ Lim, Cheng-Chew @@oth@@ Shi, Peng @@oth@@ Xu, Shengyuan @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129595780 |
dewey-sort |
3620 |
id |
OLC1996748610 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996748610</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715070845.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00207179.2016.1250162</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996748610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996748610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Wenhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive backstepping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">input quantisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple-input and multiple-output (MIMO)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pure-feedback nonlinear systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Cheng-Chew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Shengyuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of control</subfield><subfield code="d">London : Taylor & Francis, 1965</subfield><subfield code="g">90(2017), 11, Seite 2433-16</subfield><subfield code="w">(DE-627)129595780</subfield><subfield code="w">(DE-600)240693-7</subfield><subfield code="w">(DE-576)015088804</subfield><subfield code="x">0020-7179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:90</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:2433-16</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00207179.2016.1250162</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">90</subfield><subfield code="j">2017</subfield><subfield code="e">11</subfield><subfield code="h">2433-16</subfield></datafield></record></collection>
|
author |
Liu, Wenhui |
spellingShingle |
Liu, Wenhui ddc 620 misc Adaptive backstepping control misc neural networks misc input quantisation misc multiple-input and multiple-output (MIMO) misc pure-feedback nonlinear systems Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation |
authorStr |
Liu, Wenhui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595780 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7179 |
topic_title |
620 DNB Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation Adaptive backstepping control neural networks input quantisation multiple-input and multiple-output (MIMO) pure-feedback nonlinear systems |
topic |
ddc 620 misc Adaptive backstepping control misc neural networks misc input quantisation misc multiple-input and multiple-output (MIMO) misc pure-feedback nonlinear systems |
topic_unstemmed |
ddc 620 misc Adaptive backstepping control misc neural networks misc input quantisation misc multiple-input and multiple-output (MIMO) misc pure-feedback nonlinear systems |
topic_browse |
ddc 620 misc Adaptive backstepping control misc neural networks misc input quantisation misc multiple-input and multiple-output (MIMO) misc pure-feedback nonlinear systems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c c l ccl p s ps s x sx |
hierarchy_parent_title |
International journal of control |
hierarchy_parent_id |
129595780 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595780 (DE-600)240693-7 (DE-576)015088804 |
title |
Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation |
ctrlnum |
(DE-627)OLC1996748610 (DE-599)GBVOLC1996748610 (PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40 (KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon |
title_full |
Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation |
author_sort |
Liu, Wenhui |
journal |
International journal of control |
journalStr |
International journal of control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2433 |
author_browse |
Liu, Wenhui |
container_volume |
90 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Liu, Wenhui |
doi_str_mv |
10.1080/00207179.2016.1250162 |
dewey-full |
620 |
title_sort |
observer-based tracking control for mimo pure-feedback nonlinear systems with time-delay and input quantisation |
title_auth |
Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation |
abstract |
In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. |
abstractGer |
In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. |
abstract_unstemmed |
In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation |
url |
http://dx.doi.org/10.1080/00207179.2016.1250162 http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162 |
remote_bool |
false |
author2 |
Lim, Cheng-Chew Shi, Peng Xu, Shengyuan |
author2Str |
Lim, Cheng-Chew Shi, Peng Xu, Shengyuan |
ppnlink |
129595780 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/00207179.2016.1250162 |
up_date |
2024-07-04T01:17:15.077Z |
_version_ |
1803609267320651776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996748610</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715070845.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00207179.2016.1250162</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996748610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996748610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1910-72f36ceb98e8defc80bdcef0abb758da8eda6b5316337094b778e246f988e1e40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0006630320170000090001102433observerbasedtrackingcontrolformimopurefeedbacknon</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Wenhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Observer-based tracking control for MIMO pure-feedback nonlinear systems with time-delay and input quantisation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Informa UK Limited, trading as Taylor & Francis Group 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive backstepping control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">input quantisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple-input and multiple-output (MIMO)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pure-feedback nonlinear systems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Cheng-Chew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Shengyuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of control</subfield><subfield code="d">London : Taylor & Francis, 1965</subfield><subfield code="g">90(2017), 11, Seite 2433-16</subfield><subfield code="w">(DE-627)129595780</subfield><subfield code="w">(DE-600)240693-7</subfield><subfield code="w">(DE-576)015088804</subfield><subfield code="x">0020-7179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:90</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:2433-16</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00207179.2016.1250162</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00207179.2016.1250162</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">90</subfield><subfield code="j">2017</subfield><subfield code="e">11</subfield><subfield code="h">2433-16</subfield></datafield></record></collection>
|
score |
7.4010143 |