Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos
We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared bl...
Ausführliche Beschreibung
Autor*in: |
Baryakhtar, Masha [verfasserIn] |
---|
Format: |
Artikel |
---|
Erschienen: |
2017 |
---|
Schlagwörter: |
High Energy Astrophysical Phenomena |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Physical review letters - Ridge, NY : American Physical Society, 1958, (2017) |
---|---|
Übergeordnetes Werk: |
year:2017 |
Links: |
---|
DOI / URN: |
10.1103/PhysRevLett.119.131801 |
---|
Katalog-ID: |
OLC1996778765 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996778765 | ||
003 | DE-627 | ||
005 | 20220224042855.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||und c | ||
024 | 7 | |a 10.1103/PhysRevLett.119.131801 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1996778765 | ||
035 | |a (DE-599)GBVOLC1996778765 | ||
035 | |a (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 | ||
035 | |a (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a UA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Baryakhtar, Masha |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. | ||
650 | 4 | |a High Energy Astrophysical Phenomena | |
650 | 4 | |a High Energy Physics | |
650 | 4 | |a Instrumentation and Methods for Astrophysics | |
650 | 4 | |a Astrophysics of Galaxies | |
650 | 4 | |a Phenomenology | |
650 | 4 | |a Astrophysics | |
650 | 4 | |a Experiment | |
700 | 1 | |a Bramante, Joseph |4 oth | |
700 | 1 | |a Li, Shirley Weishi |4 oth | |
700 | 1 | |a Linden, Tim |4 oth | |
700 | 1 | |a Raj, Nirmal |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physical review letters |d Ridge, NY : American Physical Society, 1958 |g (2017) |w (DE-627)129503959 |w (DE-600)208853-8 |w (DE-576)014907267 |x 0031-9007 |7 nnns |
773 | 1 | 8 | |g year:2017 |
856 | 4 | 1 | |u http://dx.doi.org/10.1103/PhysRevLett.119.131801 |3 Volltext |
856 | 4 | 2 | |u http://arxiv.org/abs/1704.01577 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
936 | r | v | |a UA 1000 |
951 | |a AR | ||
952 | |j 2017 |
author_variant |
m b mb |
---|---|
matchkey_str |
article:00319007:2017----::akieihaigfetosasnaifaewnoowm |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1103/PhysRevLett.119.131801 doi PQ20171228 (DE-627)OLC1996778765 (DE-599)GBVOLC1996778765 (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo DE-627 ger DE-627 rakwb 550 DNB UA 1000 AVZ rvk Baryakhtar, Masha verfasserin aut Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment Bramante, Joseph oth Li, Shirley Weishi oth Linden, Tim oth Raj, Nirmal oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.119.131801 Volltext http://arxiv.org/abs/1704.01577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
spelling |
10.1103/PhysRevLett.119.131801 doi PQ20171228 (DE-627)OLC1996778765 (DE-599)GBVOLC1996778765 (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo DE-627 ger DE-627 rakwb 550 DNB UA 1000 AVZ rvk Baryakhtar, Masha verfasserin aut Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment Bramante, Joseph oth Li, Shirley Weishi oth Linden, Tim oth Raj, Nirmal oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.119.131801 Volltext http://arxiv.org/abs/1704.01577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
allfields_unstemmed |
10.1103/PhysRevLett.119.131801 doi PQ20171228 (DE-627)OLC1996778765 (DE-599)GBVOLC1996778765 (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo DE-627 ger DE-627 rakwb 550 DNB UA 1000 AVZ rvk Baryakhtar, Masha verfasserin aut Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment Bramante, Joseph oth Li, Shirley Weishi oth Linden, Tim oth Raj, Nirmal oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.119.131801 Volltext http://arxiv.org/abs/1704.01577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
allfieldsGer |
10.1103/PhysRevLett.119.131801 doi PQ20171228 (DE-627)OLC1996778765 (DE-599)GBVOLC1996778765 (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo DE-627 ger DE-627 rakwb 550 DNB UA 1000 AVZ rvk Baryakhtar, Masha verfasserin aut Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment Bramante, Joseph oth Li, Shirley Weishi oth Linden, Tim oth Raj, Nirmal oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.119.131801 Volltext http://arxiv.org/abs/1704.01577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
allfieldsSound |
10.1103/PhysRevLett.119.131801 doi PQ20171228 (DE-627)OLC1996778765 (DE-599)GBVOLC1996778765 (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo DE-627 ger DE-627 rakwb 550 DNB UA 1000 AVZ rvk Baryakhtar, Masha verfasserin aut Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment Bramante, Joseph oth Li, Shirley Weishi oth Linden, Tim oth Raj, Nirmal oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 (2017) (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns year:2017 http://dx.doi.org/10.1103/PhysRevLett.119.131801 Volltext http://arxiv.org/abs/1704.01577 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 2017 |
source |
Enthalten in Physical review letters (2017) year:2017 |
sourceStr |
Enthalten in Physical review letters (2017) year:2017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Physical review letters |
authorswithroles_txt_mv |
Baryakhtar, Masha @@aut@@ Bramante, Joseph @@oth@@ Li, Shirley Weishi @@oth@@ Linden, Tim @@oth@@ Raj, Nirmal @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129503959 |
dewey-sort |
3550 |
id |
OLC1996778765 |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996778765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042855.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.119.131801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996778765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996778765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baryakhtar, Masha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Astrophysical Phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and Methods for Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics of Galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phenomenology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bramante, Joseph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shirley Weishi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linden, Tim</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raj, Nirmal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.119.131801</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1704.01577</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
author |
Baryakhtar, Masha |
spellingShingle |
Baryakhtar, Masha ddc 550 rvk UA 1000 misc High Energy Astrophysical Phenomena misc High Energy Physics misc Instrumentation and Methods for Astrophysics misc Astrophysics of Galaxies misc Phenomenology misc Astrophysics misc Experiment Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos |
authorStr |
Baryakhtar, Masha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129503959 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0031-9007 |
topic_title |
550 DNB UA 1000 AVZ rvk Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos High Energy Astrophysical Phenomena High Energy Physics Instrumentation and Methods for Astrophysics Astrophysics of Galaxies Phenomenology Astrophysics Experiment |
topic |
ddc 550 rvk UA 1000 misc High Energy Astrophysical Phenomena misc High Energy Physics misc Instrumentation and Methods for Astrophysics misc Astrophysics of Galaxies misc Phenomenology misc Astrophysics misc Experiment |
topic_unstemmed |
ddc 550 rvk UA 1000 misc High Energy Astrophysical Phenomena misc High Energy Physics misc Instrumentation and Methods for Astrophysics misc Astrophysics of Galaxies misc Phenomenology misc Astrophysics misc Experiment |
topic_browse |
ddc 550 rvk UA 1000 misc High Energy Astrophysical Phenomena misc High Energy Physics misc Instrumentation and Methods for Astrophysics misc Astrophysics of Galaxies misc Phenomenology misc Astrophysics misc Experiment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j b jb s w l sw swl t l tl n r nr |
hierarchy_parent_title |
Physical review letters |
hierarchy_parent_id |
129503959 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Physical review letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 |
title |
Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos |
ctrlnum |
(DE-627)OLC1996778765 (DE-599)GBVOLC1996778765 (PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540 (KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo |
title_full |
Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos |
author_sort |
Baryakhtar, Masha |
journal |
Physical review letters |
journalStr |
Physical review letters |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Baryakhtar, Masha |
class |
550 DNB UA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Baryakhtar, Masha |
doi_str_mv |
10.1103/PhysRevLett.119.131801 |
dewey-full |
550 |
title_sort |
dark kinetic heating of neutron stars and an infrared window on wimps, simps, and pure higgsinos |
title_auth |
Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos |
abstract |
We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. |
abstractGer |
We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. |
abstract_unstemmed |
We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 |
title_short |
Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos |
url |
http://dx.doi.org/10.1103/PhysRevLett.119.131801 http://arxiv.org/abs/1704.01577 |
remote_bool |
false |
author2 |
Bramante, Joseph Li, Shirley Weishi Linden, Tim Raj, Nirmal |
author2Str |
Bramante, Joseph Li, Shirley Weishi Linden, Tim Raj, Nirmal |
ppnlink |
129503959 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1103/PhysRevLett.119.131801 |
up_date |
2024-07-04T01:22:11.628Z |
_version_ |
1803609578279010304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996778765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042855.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||und c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.119.131801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996778765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996778765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a742-832d3d03b01629cc78bca2a1496b78acb7644b902f75a9ae8160ad27a79e80540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020170000000000000000darkkineticheatingofneutronstarsandaninfraredwindo</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baryakhtar, Masha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We identify a largely model-independent signature of dark matter interactions with nucleons and electrons. Dark matter in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and X-ray emission near the galactic center, because dark matter is denser in these regions. For GeV - PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross-sections exceeding 2 \times 10^{-45} cm^2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic inter-state transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Astrophysical Phenomena</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and Methods for Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics of Galaxies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phenomenology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experiment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bramante, Joseph</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shirley Weishi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linden, Tim</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raj, Nirmal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.119.131801</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1704.01577</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
score |
7.40092 |