Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes
Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altere...
Ausführliche Beschreibung
Autor*in: |
Tamura, Kazuki [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on ultrasonics, ferroelectrics, and frequency control - New York, NY : IEEE, 1986, 64(2017), 10, Seite 1501-1513 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2017 ; number:10 ; pages:1501-1513 |
Links: |
---|
DOI / URN: |
10.1109/TUFFC.2017.2737360 |
---|
Katalog-ID: |
OLC1996835238 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996835238 | ||
003 | DE-627 | ||
005 | 20210716213601.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TUFFC.2017.2737360 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC1996835238 | ||
035 | |a (DE-599)GBVOLC1996835238 | ||
035 | |a (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 | ||
035 | |a (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 620 |a 530 |q DE-600 |
100 | 1 | |a Tamura, Kazuki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. | ||
650 | 4 | |a Radio frequency | |
650 | 4 | |a Cancerous lymph nodes (LNs) | |
650 | 4 | |a Dynamic range | |
650 | 4 | |a quantitative ultrasound (QUS) | |
650 | 4 | |a Transducers | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Electrostatic discharges | |
650 | 4 | |a LN metastases | |
650 | 4 | |a signal saturation | |
650 | 4 | |a RF signals | |
650 | 4 | |a Ultrasonic imaging | |
650 | 4 | |a high-frequency ultrasound (HFU) | |
700 | 1 | |a Mamou, Jonathan |4 oth | |
700 | 1 | |a Coron, Alain |4 oth | |
700 | 1 | |a Yoshida, Kenji |4 oth | |
700 | 1 | |a Feleppa, Ernest J |4 oth | |
700 | 1 | |a Yamaguchi, Tadashi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control |d New York, NY : IEEE, 1986 |g 64(2017), 10, Seite 1501-1513 |w (DE-627)129191442 |w (DE-600)53308-7 |w (DE-576)014456540 |x 0885-3010 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2017 |g number:10 |g pages:1501-1513 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TUFFC.2017.2737360 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/8003499 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
951 | |a AR | ||
952 | |d 64 |j 2017 |e 10 |h 1501-1513 |
author_variant |
k t kt |
---|---|
matchkey_str |
article:08853010:2017----::fetosgastrtooqsaaeeetmtsaeohgfeunylrsudinlaqie |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TUFFC.2017.2737360 doi PQ20171125 (DE-627)OLC1996835238 (DE-599)GBVOLC1996835238 (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba DE-627 ger DE-627 rakwb eng 520 620 530 DE-600 Tamura, Kazuki verfasserin aut Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) Mamou, Jonathan oth Coron, Alain oth Yoshida, Kenji oth Feleppa, Ernest J oth Yamaguchi, Tadashi oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 64(2017), 10, Seite 1501-1513 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:64 year:2017 number:10 pages:1501-1513 http://dx.doi.org/10.1109/TUFFC.2017.2737360 Volltext http://ieeexplore.ieee.org/document/8003499 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 64 2017 10 1501-1513 |
spelling |
10.1109/TUFFC.2017.2737360 doi PQ20171125 (DE-627)OLC1996835238 (DE-599)GBVOLC1996835238 (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba DE-627 ger DE-627 rakwb eng 520 620 530 DE-600 Tamura, Kazuki verfasserin aut Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) Mamou, Jonathan oth Coron, Alain oth Yoshida, Kenji oth Feleppa, Ernest J oth Yamaguchi, Tadashi oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 64(2017), 10, Seite 1501-1513 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:64 year:2017 number:10 pages:1501-1513 http://dx.doi.org/10.1109/TUFFC.2017.2737360 Volltext http://ieeexplore.ieee.org/document/8003499 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 64 2017 10 1501-1513 |
allfields_unstemmed |
10.1109/TUFFC.2017.2737360 doi PQ20171125 (DE-627)OLC1996835238 (DE-599)GBVOLC1996835238 (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba DE-627 ger DE-627 rakwb eng 520 620 530 DE-600 Tamura, Kazuki verfasserin aut Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) Mamou, Jonathan oth Coron, Alain oth Yoshida, Kenji oth Feleppa, Ernest J oth Yamaguchi, Tadashi oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 64(2017), 10, Seite 1501-1513 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:64 year:2017 number:10 pages:1501-1513 http://dx.doi.org/10.1109/TUFFC.2017.2737360 Volltext http://ieeexplore.ieee.org/document/8003499 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 64 2017 10 1501-1513 |
allfieldsGer |
10.1109/TUFFC.2017.2737360 doi PQ20171125 (DE-627)OLC1996835238 (DE-599)GBVOLC1996835238 (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba DE-627 ger DE-627 rakwb eng 520 620 530 DE-600 Tamura, Kazuki verfasserin aut Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) Mamou, Jonathan oth Coron, Alain oth Yoshida, Kenji oth Feleppa, Ernest J oth Yamaguchi, Tadashi oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 64(2017), 10, Seite 1501-1513 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:64 year:2017 number:10 pages:1501-1513 http://dx.doi.org/10.1109/TUFFC.2017.2737360 Volltext http://ieeexplore.ieee.org/document/8003499 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 64 2017 10 1501-1513 |
allfieldsSound |
10.1109/TUFFC.2017.2737360 doi PQ20171125 (DE-627)OLC1996835238 (DE-599)GBVOLC1996835238 (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba DE-627 ger DE-627 rakwb eng 520 620 530 DE-600 Tamura, Kazuki verfasserin aut Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) Mamou, Jonathan oth Coron, Alain oth Yoshida, Kenji oth Feleppa, Ernest J oth Yamaguchi, Tadashi oth Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control New York, NY : IEEE, 1986 64(2017), 10, Seite 1501-1513 (DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 0885-3010 nnns volume:64 year:2017 number:10 pages:1501-1513 http://dx.doi.org/10.1109/TUFFC.2017.2737360 Volltext http://ieeexplore.ieee.org/document/8003499 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 AR 64 2017 10 1501-1513 |
language |
English |
source |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 64(2017), 10, Seite 1501-1513 volume:64 year:2017 number:10 pages:1501-1513 |
sourceStr |
Enthalten in IEEE transactions on ultrasonics, ferroelectrics, and frequency control 64(2017), 10, Seite 1501-1513 volume:64 year:2017 number:10 pages:1501-1513 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
authorswithroles_txt_mv |
Tamura, Kazuki @@aut@@ Mamou, Jonathan @@oth@@ Coron, Alain @@oth@@ Yoshida, Kenji @@oth@@ Feleppa, Ernest J @@oth@@ Yamaguchi, Tadashi @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129191442 |
dewey-sort |
3520 |
id |
OLC1996835238 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996835238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716213601.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2017.2737360</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996835238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996835238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamura, Kazuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radio frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancerous lymph nodes (LNs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic range</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantitative ultrasound (QUS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrostatic discharges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LN metastases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signal saturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RF signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-frequency ultrasound (HFU)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mamou, Jonathan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coron, Alain</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Kenji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feleppa, Ernest J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamaguchi, Tadashi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">64(2017), 10, Seite 1501-1513</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1501-1513</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2017.2737360</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8003499</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">1501-1513</subfield></datafield></record></collection>
|
author |
Tamura, Kazuki |
spellingShingle |
Tamura, Kazuki ddc 520 misc Radio frequency misc Cancerous lymph nodes (LNs) misc Dynamic range misc quantitative ultrasound (QUS) misc Transducers misc Acoustics misc Electrostatic discharges misc LN metastases misc signal saturation misc RF signals misc Ultrasonic imaging misc high-frequency ultrasound (HFU) Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes |
authorStr |
Tamura, Kazuki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129191442 |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0885-3010 |
topic_title |
520 620 530 DE-600 Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes Radio frequency Cancerous lymph nodes (LNs) Dynamic range quantitative ultrasound (QUS) Transducers Acoustics Electrostatic discharges LN metastases signal saturation RF signals Ultrasonic imaging high-frequency ultrasound (HFU) |
topic |
ddc 520 misc Radio frequency misc Cancerous lymph nodes (LNs) misc Dynamic range misc quantitative ultrasound (QUS) misc Transducers misc Acoustics misc Electrostatic discharges misc LN metastases misc signal saturation misc RF signals misc Ultrasonic imaging misc high-frequency ultrasound (HFU) |
topic_unstemmed |
ddc 520 misc Radio frequency misc Cancerous lymph nodes (LNs) misc Dynamic range misc quantitative ultrasound (QUS) misc Transducers misc Acoustics misc Electrostatic discharges misc LN metastases misc signal saturation misc RF signals misc Ultrasonic imaging misc high-frequency ultrasound (HFU) |
topic_browse |
ddc 520 misc Radio frequency misc Cancerous lymph nodes (LNs) misc Dynamic range misc quantitative ultrasound (QUS) misc Transducers misc Acoustics misc Electrostatic discharges misc LN metastases misc signal saturation misc RF signals misc Ultrasonic imaging misc high-frequency ultrasound (HFU) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j m jm a c ac k y ky e j f ej ejf t y ty |
hierarchy_parent_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
hierarchy_parent_id |
129191442 |
dewey-tens |
520 - Astronomy 620 - Engineering 530 - Physics |
hierarchy_top_title |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129191442 (DE-600)53308-7 (DE-576)014456540 |
title |
Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes |
ctrlnum |
(DE-627)OLC1996835238 (DE-599)GBVOLC1996835238 (PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910 (KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba |
title_full |
Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes |
author_sort |
Tamura, Kazuki |
journal |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
journalStr |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1501 |
author_browse |
Tamura, Kazuki |
container_volume |
64 |
class |
520 620 530 DE-600 |
format_se |
Aufsätze |
author-letter |
Tamura, Kazuki |
doi_str_mv |
10.1109/TUFFC.2017.2737360 |
dewey-full |
520 620 530 |
title_sort |
effects of signal saturation on qus parameter estimates based on high-frequency-ultrasound signals acquired from isolated cancerous lymph nodes |
title_auth |
Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes |
abstract |
Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. |
abstractGer |
Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. |
abstract_unstemmed |
Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_95 |
container_issue |
10 |
title_short |
Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes |
url |
http://dx.doi.org/10.1109/TUFFC.2017.2737360 http://ieeexplore.ieee.org/document/8003499 |
remote_bool |
false |
author2 |
Mamou, Jonathan Coron, Alain Yoshida, Kenji Feleppa, Ernest J Yamaguchi, Tadashi |
author2Str |
Mamou, Jonathan Coron, Alain Yoshida, Kenji Feleppa, Ernest J Yamaguchi, Tadashi |
ppnlink |
129191442 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1109/TUFFC.2017.2737360 |
up_date |
2024-07-04T01:30:37.289Z |
_version_ |
1803610108504047616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996835238</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716213601.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TUFFC.2017.2737360</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996835238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996835238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i948-62c7259b79e121cc07764feffcc6fec25edebfc7db6432e120c66bb24292f7910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013324820170000064001001501effectsofsignalsaturationonqusparameterestimatesba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tamura, Kazuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Signal Saturation on QUS Parameter Estimates Based on High-Frequency-Ultrasound Signals Acquired From Isolated Cancerous Lymph Nodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Choosing an appropriate dynamic range (DR) for acquiring radio frequency (RF) data from a high-frequency-ultrasound (HFU) system is challenging because signals can vary greatly in amplitude as a result of focusing and attenuation effects. In addition, quantitative ultrasound (QUS) results are altered by saturated data. In this paper, the effects of saturation on QUS estimates of effective scatterer diameter (ESD) and effective acoustic concentration (EAC) were quantified using simulated and experimental RF data. Experimental data were acquired from 69 dissected human lymph nodes using a single-element transducer with a 26-MHz center frequency. Artificially saturated signals (<inline-formula> <tex-math notation="LaTeX">x_{c}) </tex-math></inline-formula> were produced by thresholding the original unsaturated RF echo signals. Saturation severity was expressed using a quantity called saturate-signal-to-noise ratio (SSNR). Results indicated that saturation has little effect on ESD estimates. However, EAC estimates decreased significantly with decreasing SSNR. An EAC correction algorithm exploiting a linear relationship between EAC values over a range of SSNR values and <inline-formula> <tex-math notation="LaTeX">{l}^{1} </tex-math></inline-formula>-norm of <inline-formula> <tex-math notation="LaTeX">x_{c} </tex-math></inline-formula> (i.e., the sum of absolute values of the true RF echo signal) is developed. The maximal errors in EAC estimates resulting from saturation were −8.05, −3.59, and −0.93 dB/mm 3 with the RF echo signals thresholded to keep 5, 6, and 7-bit from the original 8-bit DR, respectively. The EAC correction algorithm reduced maximal errors to −3.71, −0.89, and −0.26 dB/mm 3 when signals were thresholded at 5, 6, and 7-bit, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radio frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancerous lymph nodes (LNs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic range</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantitative ultrasound (QUS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrostatic discharges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LN metastases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signal saturation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RF signals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-frequency ultrasound (HFU)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mamou, Jonathan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coron, Alain</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Kenji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feleppa, Ernest J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamaguchi, Tadashi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on ultrasonics, ferroelectrics, and frequency control</subfield><subfield code="d">New York, NY : IEEE, 1986</subfield><subfield code="g">64(2017), 10, Seite 1501-1513</subfield><subfield code="w">(DE-627)129191442</subfield><subfield code="w">(DE-600)53308-7</subfield><subfield code="w">(DE-576)014456540</subfield><subfield code="x">0885-3010</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1501-1513</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TUFFC.2017.2737360</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/8003499</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">1501-1513</subfield></datafield></record></collection>
|
score |
7.3987885 |