The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification
A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach it...
Ausführliche Beschreibung
Autor*in: |
Kilroy, Gerard [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Royal Meteorological Society |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Quarterly journal of the Royal Meteorological Society - Reading : Soc., 1873, 143(2017), 707, Seite 2524-2536 |
---|---|
Übergeordnetes Werk: |
volume:143 ; year:2017 ; number:707 ; pages:2524-2536 |
Links: |
---|
DOI / URN: |
10.1002/qj.3104 |
---|
Katalog-ID: |
OLC1996835580 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996835580 | ||
003 | DE-627 | ||
005 | 20230715071223.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/qj.3104 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1996835580 | ||
035 | |a (DE-599)GBVOLC1996835580 | ||
035 | |a (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 | ||
035 | |a (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a UA 7650 |q AVZ |2 rvk | ||
100 | 1 | |a Kilroy, Gerard |e verfasserin |4 aut | |
245 | 1 | 4 | |a The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. | ||
540 | |a Nutzungsrecht: © 2017 Royal Meteorological Society | ||
650 | 4 | |a tropical cyclone | |
650 | 4 | |a cyclogenesis | |
650 | 4 | |a typhoon | |
650 | 4 | |a hurricane | |
650 | 4 | |a spin‐up | |
650 | 4 | |a intensification | |
650 | 4 | |a Convection | |
650 | 4 | |a Cyclones | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Winds | |
650 | 4 | |a Organizations | |
650 | 4 | |a Simulation | |
650 | 4 | |a Tropical cyclogenesis | |
650 | 4 | |a Drag | |
650 | 4 | |a Numerical models | |
650 | 4 | |a Cyclogenesis | |
650 | 4 | |a Friction | |
650 | 4 | |a Surface drag | |
650 | 4 | |a Tropical environment | |
700 | 1 | |a Montgomery, Michael T |4 oth | |
700 | 1 | |a Smith, Roger K |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Quarterly journal of the Royal Meteorological Society |d Reading : Soc., 1873 |g 143(2017), 707, Seite 2524-2536 |w (DE-627)129079324 |w (DE-600)3142-2 |w (DE-576)014411946 |x 0035-9009 |7 nnns |
773 | 1 | 8 | |g volume:143 |g year:2017 |g number:707 |g pages:2524-2536 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/qj.3104 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1957823200 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_4311 | ||
936 | r | v | |a UA 7650 |
951 | |a AR | ||
952 | |d 143 |j 2017 |e 707 |h 2524-2536 |
author_variant |
g k gk |
---|---|
matchkey_str |
article:00359009:2017----::hrlobudrlyrrcinnrpclylgnssnsbe |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1002/qj.3104 doi PQ20171228 (DE-627)OLC1996835580 (DE-599)GBVOLC1996835580 (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa DE-627 ger DE-627 rakwb eng 550 DNB UA 7650 AVZ rvk Kilroy, Gerard verfasserin aut The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. Nutzungsrecht: © 2017 Royal Meteorological Society tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment Montgomery, Michael T oth Smith, Roger K oth Enthalten in Quarterly journal of the Royal Meteorological Society Reading : Soc., 1873 143(2017), 707, Seite 2524-2536 (DE-627)129079324 (DE-600)3142-2 (DE-576)014411946 0035-9009 nnns volume:143 year:2017 number:707 pages:2524-2536 http://dx.doi.org/10.1002/qj.3104 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract https://search.proquest.com/docview/1957823200 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_4311 UA 7650 AR 143 2017 707 2524-2536 |
spelling |
10.1002/qj.3104 doi PQ20171228 (DE-627)OLC1996835580 (DE-599)GBVOLC1996835580 (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa DE-627 ger DE-627 rakwb eng 550 DNB UA 7650 AVZ rvk Kilroy, Gerard verfasserin aut The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. Nutzungsrecht: © 2017 Royal Meteorological Society tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment Montgomery, Michael T oth Smith, Roger K oth Enthalten in Quarterly journal of the Royal Meteorological Society Reading : Soc., 1873 143(2017), 707, Seite 2524-2536 (DE-627)129079324 (DE-600)3142-2 (DE-576)014411946 0035-9009 nnns volume:143 year:2017 number:707 pages:2524-2536 http://dx.doi.org/10.1002/qj.3104 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract https://search.proquest.com/docview/1957823200 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_4311 UA 7650 AR 143 2017 707 2524-2536 |
allfields_unstemmed |
10.1002/qj.3104 doi PQ20171228 (DE-627)OLC1996835580 (DE-599)GBVOLC1996835580 (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa DE-627 ger DE-627 rakwb eng 550 DNB UA 7650 AVZ rvk Kilroy, Gerard verfasserin aut The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. Nutzungsrecht: © 2017 Royal Meteorological Society tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment Montgomery, Michael T oth Smith, Roger K oth Enthalten in Quarterly journal of the Royal Meteorological Society Reading : Soc., 1873 143(2017), 707, Seite 2524-2536 (DE-627)129079324 (DE-600)3142-2 (DE-576)014411946 0035-9009 nnns volume:143 year:2017 number:707 pages:2524-2536 http://dx.doi.org/10.1002/qj.3104 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract https://search.proquest.com/docview/1957823200 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_4311 UA 7650 AR 143 2017 707 2524-2536 |
allfieldsGer |
10.1002/qj.3104 doi PQ20171228 (DE-627)OLC1996835580 (DE-599)GBVOLC1996835580 (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa DE-627 ger DE-627 rakwb eng 550 DNB UA 7650 AVZ rvk Kilroy, Gerard verfasserin aut The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. Nutzungsrecht: © 2017 Royal Meteorological Society tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment Montgomery, Michael T oth Smith, Roger K oth Enthalten in Quarterly journal of the Royal Meteorological Society Reading : Soc., 1873 143(2017), 707, Seite 2524-2536 (DE-627)129079324 (DE-600)3142-2 (DE-576)014411946 0035-9009 nnns volume:143 year:2017 number:707 pages:2524-2536 http://dx.doi.org/10.1002/qj.3104 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract https://search.proquest.com/docview/1957823200 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_4311 UA 7650 AR 143 2017 707 2524-2536 |
allfieldsSound |
10.1002/qj.3104 doi PQ20171228 (DE-627)OLC1996835580 (DE-599)GBVOLC1996835580 (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa DE-627 ger DE-627 rakwb eng 550 DNB UA 7650 AVZ rvk Kilroy, Gerard verfasserin aut The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. Nutzungsrecht: © 2017 Royal Meteorological Society tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment Montgomery, Michael T oth Smith, Roger K oth Enthalten in Quarterly journal of the Royal Meteorological Society Reading : Soc., 1873 143(2017), 707, Seite 2524-2536 (DE-627)129079324 (DE-600)3142-2 (DE-576)014411946 0035-9009 nnns volume:143 year:2017 number:707 pages:2524-2536 http://dx.doi.org/10.1002/qj.3104 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract https://search.proquest.com/docview/1957823200 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_4311 UA 7650 AR 143 2017 707 2524-2536 |
language |
English |
source |
Enthalten in Quarterly journal of the Royal Meteorological Society 143(2017), 707, Seite 2524-2536 volume:143 year:2017 number:707 pages:2524-2536 |
sourceStr |
Enthalten in Quarterly journal of the Royal Meteorological Society 143(2017), 707, Seite 2524-2536 volume:143 year:2017 number:707 pages:2524-2536 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Quarterly journal of the Royal Meteorological Society |
authorswithroles_txt_mv |
Kilroy, Gerard @@aut@@ Montgomery, Michael T @@oth@@ Smith, Roger K @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129079324 |
dewey-sort |
3550 |
id |
OLC1996835580 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996835580</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715071223.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qj.3104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996835580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996835580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 7650</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kilroy, Gerard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tropical cyclone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">typhoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hurricane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spin‐up</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intensification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Winds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical cyclogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drag</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface drag</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montgomery, Michael T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Roger K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quarterly journal of the Royal Meteorological Society</subfield><subfield code="d">Reading : Soc., 1873</subfield><subfield code="g">143(2017), 707, Seite 2524-2536</subfield><subfield code="w">(DE-627)129079324</subfield><subfield code="w">(DE-600)3142-2</subfield><subfield code="w">(DE-576)014411946</subfield><subfield code="x">0035-9009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:143</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:707</subfield><subfield code="g">pages:2524-2536</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qj.3104</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1957823200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 7650</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">143</subfield><subfield code="j">2017</subfield><subfield code="e">707</subfield><subfield code="h">2524-2536</subfield></datafield></record></collection>
|
author |
Kilroy, Gerard |
spellingShingle |
Kilroy, Gerard ddc 550 rvk UA 7650 misc tropical cyclone misc cyclogenesis misc typhoon misc hurricane misc spin‐up misc intensification misc Convection misc Cyclones misc Mathematical models misc Winds misc Organizations misc Simulation misc Tropical cyclogenesis misc Drag misc Numerical models misc Cyclogenesis misc Friction misc Surface drag misc Tropical environment The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
authorStr |
Kilroy, Gerard |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129079324 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0035-9009 |
topic_title |
550 DNB UA 7650 AVZ rvk The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification tropical cyclone cyclogenesis typhoon hurricane spin‐up intensification Convection Cyclones Mathematical models Winds Organizations Simulation Tropical cyclogenesis Drag Numerical models Cyclogenesis Friction Surface drag Tropical environment |
topic |
ddc 550 rvk UA 7650 misc tropical cyclone misc cyclogenesis misc typhoon misc hurricane misc spin‐up misc intensification misc Convection misc Cyclones misc Mathematical models misc Winds misc Organizations misc Simulation misc Tropical cyclogenesis misc Drag misc Numerical models misc Cyclogenesis misc Friction misc Surface drag misc Tropical environment |
topic_unstemmed |
ddc 550 rvk UA 7650 misc tropical cyclone misc cyclogenesis misc typhoon misc hurricane misc spin‐up misc intensification misc Convection misc Cyclones misc Mathematical models misc Winds misc Organizations misc Simulation misc Tropical cyclogenesis misc Drag misc Numerical models misc Cyclogenesis misc Friction misc Surface drag misc Tropical environment |
topic_browse |
ddc 550 rvk UA 7650 misc tropical cyclone misc cyclogenesis misc typhoon misc hurricane misc spin‐up misc intensification misc Convection misc Cyclones misc Mathematical models misc Winds misc Organizations misc Simulation misc Tropical cyclogenesis misc Drag misc Numerical models misc Cyclogenesis misc Friction misc Surface drag misc Tropical environment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m t m mt mtm r k s rk rks |
hierarchy_parent_title |
Quarterly journal of the Royal Meteorological Society |
hierarchy_parent_id |
129079324 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Quarterly journal of the Royal Meteorological Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129079324 (DE-600)3142-2 (DE-576)014411946 |
title |
The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
ctrlnum |
(DE-627)OLC1996835580 (DE-599)GBVOLC1996835580 (PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3 (KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa |
title_full |
The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
author_sort |
Kilroy, Gerard |
journal |
Quarterly journal of the Royal Meteorological Society |
journalStr |
Quarterly journal of the Royal Meteorological Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
2524 |
author_browse |
Kilroy, Gerard |
container_volume |
143 |
class |
550 DNB UA 7650 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Kilroy, Gerard |
doi_str_mv |
10.1002/qj.3104 |
dewey-full |
550 |
title_sort |
role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
title_auth |
The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
abstract |
A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. |
abstractGer |
A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. |
abstract_unstemmed |
A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_4311 |
container_issue |
707 |
title_short |
The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification |
url |
http://dx.doi.org/10.1002/qj.3104 http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract https://search.proquest.com/docview/1957823200 |
remote_bool |
false |
author2 |
Montgomery, Michael T Smith, Roger K |
author2Str |
Montgomery, Michael T Smith, Roger K |
ppnlink |
129079324 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/qj.3104 |
up_date |
2024-07-04T01:30:42.201Z |
_version_ |
1803610113654652928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996835580</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715071223.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qj.3104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996835580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996835580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1294-4d8b4967d92f779a65d4e0e8cf221fffdbf4354ec432554ae6d9e5e6ece9eeb3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0013343420170000143070702524roleofboundarylayerfrictionontropicalcyclogenesisa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 7650</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kilroy, Gerard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The role of boundary‐layer friction on tropical cyclogenesis and subsequent intensification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A recent idealized, high‐resolution, numerical model simulation of tropical cyclogenesis is compared with a simulation in which the surface drag is set to zero. It is shown that, while spin‐up occurs in both simulations, the vortex in the one without surface drag takes over twice as long to reach its intensification begin time. When surface friction is not included, the inner core size of the simulated vortex is considerably larger and the subsequent vortex intensity is significantly weaker than in the case with friction. In the absence of surface drag, the convection eventually develops without any systematic organization and lies often outside the radius of azimuthally averaged maximum tangential winds. The results underscore the crucial role of friction in organizing deep convection in the inner core of the nascent vortex and raise the possibility that the timing of tropical cyclogenesis in numerical models may have an important dependence on the boundary‐layer parametrization scheme used in the model. Time series of (a) maximum total wind speed ( VT max , tot) and maximum azimuthally averaged tangential wind speed ( V max , tan), (b) the radius R vmax at which the maximum tangential wind speed ( V max ) occurs, and (c) the azimuthally averaged maximum vertical velocity ( W max ). Blue curves are for Ex‐Fr, red curves are for Ex‐NoFr.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Royal Meteorological Society</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tropical cyclone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyclogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">typhoon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hurricane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spin‐up</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intensification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclones</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Winds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical cyclogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drag</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclogenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Friction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface drag</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropical environment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Montgomery, Michael T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Roger K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quarterly journal of the Royal Meteorological Society</subfield><subfield code="d">Reading : Soc., 1873</subfield><subfield code="g">143(2017), 707, Seite 2524-2536</subfield><subfield code="w">(DE-627)129079324</subfield><subfield code="w">(DE-600)3142-2</subfield><subfield code="w">(DE-576)014411946</subfield><subfield code="x">0035-9009</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:143</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:707</subfield><subfield code="g">pages:2524-2536</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qj.3104</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qj.3104/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1957823200</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 7650</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">143</subfield><subfield code="j">2017</subfield><subfield code="e">707</subfield><subfield code="h">2524-2536</subfield></datafield></record></collection>
|
score |
7.3997 |