Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number
This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy s...
Ausführliche Beschreibung
Autor*in: |
Aono, Hikaru [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . |
---|
Übergeordnetes Werk: |
Enthalten in: AIAA journal / American Institute of Aeronautics and Astronautics - Reston, Va. [u.a.] : AIAA, 1963, (2017), Seite 3789-3806 |
---|---|
Übergeordnetes Werk: |
year:2017 ; pages:3789-3806 |
Links: |
---|
DOI / URN: |
10.2514/1.J055727 |
---|
Katalog-ID: |
OLC199686808X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199686808X | ||
003 | DE-627 | ||
005 | 20220221120018.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.2514/1.J055727 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC199686808X | ||
035 | |a (DE-599)GBVOLC199686808X | ||
035 | |a (PRQ)aiaa_journals_10_2514_1_J0557270 | ||
035 | |a (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q DE-600 |
084 | |a 55.50 |2 bkl | ||
084 | |a 55.60 |2 bkl | ||
084 | |a 50.93 |2 bkl | ||
100 | 1 | |a Aono, Hikaru |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. | ||
540 | |a Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . | ||
700 | 1 | |a Kawai, Soshi |4 oth | |
700 | 1 | |a Nonomura, Taku |4 oth | |
700 | 1 | |a Sato, Makoto |4 oth | |
700 | 1 | |a Fujii, Kozo |4 oth | |
700 | 1 | |a Okada, Koichi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t AIAA journal / American Institute of Aeronautics and Astronautics |d Reston, Va. [u.a.] : AIAA, 1963 |g (2017), Seite 3789-3806 |w (DE-627)12959203X |w (DE-600)240221-X |w (DE-576)015084736 |x 0001-1452 |7 nnns |
773 | 1 | 8 | |g year:2017 |g pages:3789-3806 |
856 | 4 | 1 | |u http://dx.doi.org/10.2514/1.J055727 |3 Volltext |
856 | 4 | 2 | |u http://arc.aiaa.org/doi/full/10.2514/1.J055727 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
936 | b | k | |a 55.50 |q AVZ |
936 | b | k | |a 55.60 |q AVZ |
936 | b | k | |a 50.93 |q AVZ |
951 | |a AR | ||
952 | |j 2017 |h 3789-3806 |
author_variant |
h a ha |
---|---|
matchkey_str |
article:00011452:2017----::lsacutrusmdfeunyfetolaigdelweaain |
hierarchy_sort_str |
2017 |
bklnumber |
55.50 55.60 50.93 |
publishDate |
2017 |
allfields |
10.2514/1.J055727 doi PQ20171228 (DE-627)OLC199686808X (DE-599)GBVOLC199686808X (PRQ)aiaa_journals_10_2514_1_J0557270 (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged DE-627 ger DE-627 rakwb eng 380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl Aono, Hikaru verfasserin aut Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . Kawai, Soshi oth Nonomura, Taku oth Sato, Makoto oth Fujii, Kozo oth Okada, Koichi oth Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics Reston, Va. [u.a.] : AIAA, 1963 (2017), Seite 3789-3806 (DE-627)12959203X (DE-600)240221-X (DE-576)015084736 0001-1452 nnns year:2017 pages:3789-3806 http://dx.doi.org/10.2514/1.J055727 Volltext http://arc.aiaa.org/doi/full/10.2514/1.J055727 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST 55.50 AVZ 55.60 AVZ 50.93 AVZ AR 2017 3789-3806 |
spelling |
10.2514/1.J055727 doi PQ20171228 (DE-627)OLC199686808X (DE-599)GBVOLC199686808X (PRQ)aiaa_journals_10_2514_1_J0557270 (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged DE-627 ger DE-627 rakwb eng 380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl Aono, Hikaru verfasserin aut Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . Kawai, Soshi oth Nonomura, Taku oth Sato, Makoto oth Fujii, Kozo oth Okada, Koichi oth Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics Reston, Va. [u.a.] : AIAA, 1963 (2017), Seite 3789-3806 (DE-627)12959203X (DE-600)240221-X (DE-576)015084736 0001-1452 nnns year:2017 pages:3789-3806 http://dx.doi.org/10.2514/1.J055727 Volltext http://arc.aiaa.org/doi/full/10.2514/1.J055727 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST 55.50 AVZ 55.60 AVZ 50.93 AVZ AR 2017 3789-3806 |
allfields_unstemmed |
10.2514/1.J055727 doi PQ20171228 (DE-627)OLC199686808X (DE-599)GBVOLC199686808X (PRQ)aiaa_journals_10_2514_1_J0557270 (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged DE-627 ger DE-627 rakwb eng 380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl Aono, Hikaru verfasserin aut Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . Kawai, Soshi oth Nonomura, Taku oth Sato, Makoto oth Fujii, Kozo oth Okada, Koichi oth Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics Reston, Va. [u.a.] : AIAA, 1963 (2017), Seite 3789-3806 (DE-627)12959203X (DE-600)240221-X (DE-576)015084736 0001-1452 nnns year:2017 pages:3789-3806 http://dx.doi.org/10.2514/1.J055727 Volltext http://arc.aiaa.org/doi/full/10.2514/1.J055727 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST 55.50 AVZ 55.60 AVZ 50.93 AVZ AR 2017 3789-3806 |
allfieldsGer |
10.2514/1.J055727 doi PQ20171228 (DE-627)OLC199686808X (DE-599)GBVOLC199686808X (PRQ)aiaa_journals_10_2514_1_J0557270 (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged DE-627 ger DE-627 rakwb eng 380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl Aono, Hikaru verfasserin aut Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . Kawai, Soshi oth Nonomura, Taku oth Sato, Makoto oth Fujii, Kozo oth Okada, Koichi oth Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics Reston, Va. [u.a.] : AIAA, 1963 (2017), Seite 3789-3806 (DE-627)12959203X (DE-600)240221-X (DE-576)015084736 0001-1452 nnns year:2017 pages:3789-3806 http://dx.doi.org/10.2514/1.J055727 Volltext http://arc.aiaa.org/doi/full/10.2514/1.J055727 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST 55.50 AVZ 55.60 AVZ 50.93 AVZ AR 2017 3789-3806 |
allfieldsSound |
10.2514/1.J055727 doi PQ20171228 (DE-627)OLC199686808X (DE-599)GBVOLC199686808X (PRQ)aiaa_journals_10_2514_1_J0557270 (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged DE-627 ger DE-627 rakwb eng 380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl Aono, Hikaru verfasserin aut Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions . Kawai, Soshi oth Nonomura, Taku oth Sato, Makoto oth Fujii, Kozo oth Okada, Koichi oth Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics Reston, Va. [u.a.] : AIAA, 1963 (2017), Seite 3789-3806 (DE-627)12959203X (DE-600)240221-X (DE-576)015084736 0001-1452 nnns year:2017 pages:3789-3806 http://dx.doi.org/10.2514/1.J055727 Volltext http://arc.aiaa.org/doi/full/10.2514/1.J055727 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST 55.50 AVZ 55.60 AVZ 50.93 AVZ AR 2017 3789-3806 |
language |
English |
source |
Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics (2017), Seite 3789-3806 year:2017 pages:3789-3806 |
sourceStr |
Enthalten in AIAA journal / American Institute of Aeronautics and Astronautics (2017), Seite 3789-3806 year:2017 pages:3789-3806 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
AIAA journal / American Institute of Aeronautics and Astronautics |
authorswithroles_txt_mv |
Aono, Hikaru @@aut@@ Kawai, Soshi @@oth@@ Nonomura, Taku @@oth@@ Sato, Makoto @@oth@@ Fujii, Kozo @@oth@@ Okada, Koichi @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
12959203X |
dewey-sort |
3380 |
id |
OLC199686808X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199686808X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221120018.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2514/1.J055727</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199686808X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199686808X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)aiaa_journals_10_2514_1_J0557270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aono, Hikaru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawai, Soshi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonomura, Taku</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sato, Makoto</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujii, Kozo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okada, Koichi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">AIAA journal / American Institute of Aeronautics and Astronautics</subfield><subfield code="d">Reston, Va. [u.a.] : AIAA, 1963</subfield><subfield code="g">(2017), Seite 3789-3806</subfield><subfield code="w">(DE-627)12959203X</subfield><subfield code="w">(DE-600)240221-X</subfield><subfield code="w">(DE-576)015084736</subfield><subfield code="x">0001-1452</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield><subfield code="g">pages:3789-3806</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.2514/1.J055727</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arc.aiaa.org/doi/full/10.2514/1.J055727</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.50</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.60</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.93</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield><subfield code="h">3789-3806</subfield></datafield></record></collection>
|
author |
Aono, Hikaru |
spellingShingle |
Aono, Hikaru ddc 380 bkl 55.50 bkl 55.60 bkl 50.93 Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
authorStr |
Aono, Hikaru |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12959203X |
format |
Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-1452 |
topic_title |
380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
topic |
ddc 380 bkl 55.50 bkl 55.60 bkl 50.93 |
topic_unstemmed |
ddc 380 bkl 55.50 bkl 55.60 bkl 50.93 |
topic_browse |
ddc 380 bkl 55.50 bkl 55.60 bkl 50.93 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s k sk t n tn m s ms k f kf k o ko |
hierarchy_parent_title |
AIAA journal / American Institute of Aeronautics and Astronautics |
hierarchy_parent_id |
12959203X |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
AIAA journal / American Institute of Aeronautics and Astronautics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12959203X (DE-600)240221-X (DE-576)015084736 |
title |
Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
ctrlnum |
(DE-627)OLC199686808X (DE-599)GBVOLC199686808X (PRQ)aiaa_journals_10_2514_1_J0557270 (KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged |
title_full |
Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
author_sort |
Aono, Hikaru |
journal |
AIAA journal / American Institute of Aeronautics and Astronautics |
journalStr |
AIAA journal / American Institute of Aeronautics and Astronautics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
3789 |
author_browse |
Aono, Hikaru |
class |
380 DE-600 55.50 bkl 55.60 bkl 50.93 bkl |
format_se |
Aufsätze |
author-letter |
Aono, Hikaru |
doi_str_mv |
10.2514/1.J055727 |
dewey-full |
380 |
title_sort |
plasma-actuator burst-mode frequency effects on leading-edge flow-separation control at reynolds number |
title_auth |
Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
abstract |
This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. |
abstractGer |
This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. |
abstract_unstemmed |
This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST |
title_short |
Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number |
url |
http://dx.doi.org/10.2514/1.J055727 http://arc.aiaa.org/doi/full/10.2514/1.J055727 |
remote_bool |
false |
author2 |
Kawai, Soshi Nonomura, Taku Sato, Makoto Fujii, Kozo Okada, Koichi |
author2Str |
Kawai, Soshi Nonomura, Taku Sato, Makoto Fujii, Kozo Okada, Koichi |
ppnlink |
12959203X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.2514/1.J055727 |
up_date |
2024-07-04T01:35:59.239Z |
_version_ |
1803610446092042240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199686808X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221120018.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2514/1.J055727</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199686808X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199686808X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)aiaa_journals_10_2514_1_J0557270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0015866620170000000000003789plasmaactuatorburstmodefrequencyeffectsonleadinged</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aono, Hikaru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma-Actuator Burst-Mode Frequency Effects on Leading-Edge Flow-Separation Control at Reynolds Number</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper investigates the control of leading-edge flow separation over an airfoil using a dielectric-barrier discharge plasma actuator. A chord-based Reynolds number and an angle of attack are 2.6×105 and 18.8 deg, respectively. The flow around the stalled airfoil is computed by using large-eddy simulations. The body-force distribution-based plasma actuator model is adopted and set near the leading edge of the airfoil. Effects of a nondimensional burst frequency with a constant duty cycle on the performance of flow control are studied. It is found that, for the cases of the nondimensional burst frequencies 5, 10, 25, and 50, lift-to-drag ratios increase in comparison with that in the cases of the burst frequencies 1 and 100 and without the control. Controlled flow separates near the 30% chord from the leading edge due to adverse pressure gradient associated with the angle of attack. Mechanisms of suppression of the leading-edge flow separation in those cases are discussed.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2017 by Hikaru Aono, Soshi Kawai, Taku Nonomura, Makoto Sato, Kozo Fujii, and Koichi Okada. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawai, Soshi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonomura, Taku</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sato, Makoto</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujii, Kozo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okada, Koichi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">AIAA journal / American Institute of Aeronautics and Astronautics</subfield><subfield code="d">Reston, Va. [u.a.] : AIAA, 1963</subfield><subfield code="g">(2017), Seite 3789-3806</subfield><subfield code="w">(DE-627)12959203X</subfield><subfield code="w">(DE-600)240221-X</subfield><subfield code="w">(DE-576)015084736</subfield><subfield code="x">0001-1452</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield><subfield code="g">pages:3789-3806</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.2514/1.J055727</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arc.aiaa.org/doi/full/10.2514/1.J055727</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.50</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.60</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.93</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield><subfield code="h">3789-3806</subfield></datafield></record></collection>
|
score |
7.4013615 |