Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system
This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at...
Ausführliche Beschreibung
Autor*in: |
Wang, Qingquan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 |
---|
Schlagwörter: |
Cylindrical interferometry system |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of modern optics - Abingdon : Taylor & Francis, 1987, 64(2017), 19, Seite 1930 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2017 ; number:19 ; pages:1930 |
Links: |
---|
DOI / URN: |
10.1080/09500340.2017.1327620 |
---|
Katalog-ID: |
OLC1996950266 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996950266 | ||
003 | DE-627 | ||
005 | 20220219201204.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/09500340.2017.1327620 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1996950266 | ||
035 | |a (DE-599)GBVOLC1996950266 | ||
035 | |a (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 | ||
035 | |a (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Wang, Qingquan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. | ||
540 | |a Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 | ||
650 | 4 | |a Cylindrical interferometry system | |
650 | 4 | |a CGH fabrication error | |
650 | 4 | |a computer-generated hologram (CGH) | |
650 | 4 | |a Feasibility studies | |
650 | 4 | |a Holography | |
650 | 4 | |a Cylindrical errors | |
650 | 4 | |a Calibration | |
650 | 4 | |a Simulation | |
650 | 4 | |a Test procedures | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Aberration | |
650 | 4 | |a Cylindrical waves | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Misalignment | |
650 | 4 | |a Diffraction | |
650 | 4 | |a Error analysis | |
650 | 4 | |a Interferometry | |
650 | 4 | |a Fabrication | |
700 | 1 | |a Yu, Yingjie |4 oth | |
700 | 1 | |a Mou, Kebing |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of modern optics |d Abingdon : Taylor & Francis, 1987 |g 64(2017), 19, Seite 1930 |w (DE-627)130416061 |w (DE-600)626352-5 |w (DE-576)015918866 |x 0950-0340 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2017 |g number:19 |g pages:1930 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/09500340.2017.1327620 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 |
856 | 4 | 2 | |u https://search.proquest.com/docview/1926974354 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 33.00 |q AVZ |
951 | |a AR | ||
952 | |d 64 |j 2017 |e 19 |h 1930 |
author_variant |
q w qw |
---|---|
matchkey_str |
article:09500340:2017----::etntefetfoptreeaehlgafbiainroiayid |
hierarchy_sort_str |
2017 |
bklnumber |
33.00 |
publishDate |
2017 |
allfields |
10.1080/09500340.2017.1327620 doi PQ20171228 (DE-627)OLC1996950266 (DE-599)GBVOLC1996950266 (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Wang, Qingquan verfasserin aut Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication Yu, Yingjie oth Mou, Kebing oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 64(2017), 19, Seite 1930 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:64 year:2017 number:19 pages:1930 http://dx.doi.org/10.1080/09500340.2017.1327620 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 https://search.proquest.com/docview/1926974354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 64 2017 19 1930 |
spelling |
10.1080/09500340.2017.1327620 doi PQ20171228 (DE-627)OLC1996950266 (DE-599)GBVOLC1996950266 (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Wang, Qingquan verfasserin aut Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication Yu, Yingjie oth Mou, Kebing oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 64(2017), 19, Seite 1930 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:64 year:2017 number:19 pages:1930 http://dx.doi.org/10.1080/09500340.2017.1327620 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 https://search.proquest.com/docview/1926974354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 64 2017 19 1930 |
allfields_unstemmed |
10.1080/09500340.2017.1327620 doi PQ20171228 (DE-627)OLC1996950266 (DE-599)GBVOLC1996950266 (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Wang, Qingquan verfasserin aut Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication Yu, Yingjie oth Mou, Kebing oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 64(2017), 19, Seite 1930 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:64 year:2017 number:19 pages:1930 http://dx.doi.org/10.1080/09500340.2017.1327620 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 https://search.proquest.com/docview/1926974354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 64 2017 19 1930 |
allfieldsGer |
10.1080/09500340.2017.1327620 doi PQ20171228 (DE-627)OLC1996950266 (DE-599)GBVOLC1996950266 (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Wang, Qingquan verfasserin aut Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication Yu, Yingjie oth Mou, Kebing oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 64(2017), 19, Seite 1930 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:64 year:2017 number:19 pages:1930 http://dx.doi.org/10.1080/09500340.2017.1327620 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 https://search.proquest.com/docview/1926974354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 64 2017 19 1930 |
allfieldsSound |
10.1080/09500340.2017.1327620 doi PQ20171228 (DE-627)OLC1996950266 (DE-599)GBVOLC1996950266 (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica DE-627 ger DE-627 rakwb eng 530 620 DNB 33.00 bkl Wang, Qingquan verfasserin aut Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication Yu, Yingjie oth Mou, Kebing oth Enthalten in Journal of modern optics Abingdon : Taylor & Francis, 1987 64(2017), 19, Seite 1930 (DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 0950-0340 nnns volume:64 year:2017 number:19 pages:1930 http://dx.doi.org/10.1080/09500340.2017.1327620 Volltext http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 https://search.proquest.com/docview/1926974354 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 33.00 AVZ AR 64 2017 19 1930 |
language |
English |
source |
Enthalten in Journal of modern optics 64(2017), 19, Seite 1930 volume:64 year:2017 number:19 pages:1930 |
sourceStr |
Enthalten in Journal of modern optics 64(2017), 19, Seite 1930 volume:64 year:2017 number:19 pages:1930 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of modern optics |
authorswithroles_txt_mv |
Wang, Qingquan @@aut@@ Yu, Yingjie @@oth@@ Mou, Kebing @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
130416061 |
dewey-sort |
3530 |
id |
OLC1996950266 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996950266</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219201204.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/09500340.2017.1327620</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996950266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996950266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Qingquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical interferometry system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CGH fabrication error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-generated hologram (CGH)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Test procedures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aberration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Misalignment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fabrication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yingjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mou, Kebing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern optics</subfield><subfield code="d">Abingdon : Taylor & Francis, 1987</subfield><subfield code="g">64(2017), 19, Seite 1930</subfield><subfield code="w">(DE-627)130416061</subfield><subfield code="w">(DE-600)626352-5</subfield><subfield code="w">(DE-576)015918866</subfield><subfield code="x">0950-0340</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:1930</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/09500340.2017.1327620</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1926974354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield><subfield code="h">1930</subfield></datafield></record></collection>
|
author |
Wang, Qingquan |
spellingShingle |
Wang, Qingquan ddc 530 bkl 33.00 misc Cylindrical interferometry system misc CGH fabrication error misc computer-generated hologram (CGH) misc Feasibility studies misc Holography misc Cylindrical errors misc Calibration misc Simulation misc Test procedures misc Mathematical analysis misc Aberration misc Cylindrical waves misc Computer simulation misc Misalignment misc Diffraction misc Error analysis misc Interferometry misc Fabrication Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
authorStr |
Wang, Qingquan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130416061 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0950-0340 |
topic_title |
530 620 DNB 33.00 bkl Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system Cylindrical interferometry system CGH fabrication error computer-generated hologram (CGH) Feasibility studies Holography Cylindrical errors Calibration Simulation Test procedures Mathematical analysis Aberration Cylindrical waves Computer simulation Misalignment Diffraction Error analysis Interferometry Fabrication |
topic |
ddc 530 bkl 33.00 misc Cylindrical interferometry system misc CGH fabrication error misc computer-generated hologram (CGH) misc Feasibility studies misc Holography misc Cylindrical errors misc Calibration misc Simulation misc Test procedures misc Mathematical analysis misc Aberration misc Cylindrical waves misc Computer simulation misc Misalignment misc Diffraction misc Error analysis misc Interferometry misc Fabrication |
topic_unstemmed |
ddc 530 bkl 33.00 misc Cylindrical interferometry system misc CGH fabrication error misc computer-generated hologram (CGH) misc Feasibility studies misc Holography misc Cylindrical errors misc Calibration misc Simulation misc Test procedures misc Mathematical analysis misc Aberration misc Cylindrical waves misc Computer simulation misc Misalignment misc Diffraction misc Error analysis misc Interferometry misc Fabrication |
topic_browse |
ddc 530 bkl 33.00 misc Cylindrical interferometry system misc CGH fabrication error misc computer-generated hologram (CGH) misc Feasibility studies misc Holography misc Cylindrical errors misc Calibration misc Simulation misc Test procedures misc Mathematical analysis misc Aberration misc Cylindrical waves misc Computer simulation misc Misalignment misc Diffraction misc Error analysis misc Interferometry misc Fabrication |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y y yy k m km |
hierarchy_parent_title |
Journal of modern optics |
hierarchy_parent_id |
130416061 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Journal of modern optics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130416061 (DE-600)626352-5 (DE-576)015918866 |
title |
Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
ctrlnum |
(DE-627)OLC1996950266 (DE-599)GBVOLC1996950266 (PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0 (KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica |
title_full |
Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
author_sort |
Wang, Qingquan |
journal |
Journal of modern optics |
journalStr |
Journal of modern optics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1930 |
author_browse |
Wang, Qingquan |
container_volume |
64 |
class |
530 620 DNB 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Wang, Qingquan |
doi_str_mv |
10.1080/09500340.2017.1327620 |
dewey-full |
530 620 |
title_sort |
testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
title_auth |
Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
abstract |
This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. |
abstractGer |
This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. |
abstract_unstemmed |
This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_70 GBV_ILN_4314 GBV_ILN_4318 |
container_issue |
19 |
title_short |
Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system |
url |
http://dx.doi.org/10.1080/09500340.2017.1327620 http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620 https://search.proquest.com/docview/1926974354 |
remote_bool |
false |
author2 |
Yu, Yingjie Mou, Kebing |
author2Str |
Yu, Yingjie Mou, Kebing |
ppnlink |
130416061 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1080/09500340.2017.1327620 |
up_date |
2024-07-04T01:49:26.689Z |
_version_ |
1803611292765782016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996950266</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219201204.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/09500340.2017.1327620</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996950266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996950266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1492-a8ca43601acac1430e275f6062b25f9e16318c74c21cddc1a9acf96ef37fe4ca0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0024045120170000064001901930testingtheeffectofcomputergeneratedhologramfabrica</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Qingquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017 Informa UK Limited, trading as Taylor & Francis Group 2017</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical interferometry system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CGH fabrication error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer-generated hologram (CGH)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasibility studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Test procedures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aberration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Misalignment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fabrication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yingjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mou, Kebing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern optics</subfield><subfield code="d">Abingdon : Taylor & Francis, 1987</subfield><subfield code="g">64(2017), 19, Seite 1930</subfield><subfield code="w">(DE-627)130416061</subfield><subfield code="w">(DE-600)626352-5</subfield><subfield code="w">(DE-576)015918866</subfield><subfield code="x">0950-0340</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:1930</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/09500340.2017.1327620</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/09500340.2017.1327620</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1926974354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield><subfield code="h">1930</subfield></datafield></record></collection>
|
score |
7.4007463 |