Classifying the tropospheric precursor patterns of sudden stratospheric warmings
Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tro...
Ausführliche Beschreibung
Autor*in: |
Bao, Ming [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geophysical research letters - Washington, DC : Union, 1974, 44(2017), 15, Seite 8011-8016 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2017 ; number:15 ; pages:8011-8016 |
Links: |
---|
DOI / URN: |
10.1002/2017GL074611 |
---|
Katalog-ID: |
OLC199698117X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199698117X | ||
003 | DE-627 | ||
005 | 20220223170719.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2017GL074611 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC199698117X | ||
035 | |a (DE-599)GBVOLC199698117X | ||
035 | |a (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 | ||
035 | |a (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Bao, Ming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Classifying the tropospheric precursor patterns of sudden stratospheric warmings |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs | ||
540 | |a Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a sudden stratospheric warmings | |
650 | 4 | |a precursor | |
650 | 4 | |a classification | |
650 | 4 | |a Planetary waves | |
650 | 4 | |a Clusters | |
650 | 4 | |a Western hemisphere | |
650 | 4 | |a Circulation | |
650 | 4 | |a Troposphere | |
650 | 4 | |a Maps | |
650 | 4 | |a Southern Oscillation | |
650 | 4 | |a Classification | |
650 | 4 | |a El Nino | |
650 | 4 | |a El Nino-Southern Oscillation event | |
650 | 4 | |a Cluster analysis | |
650 | 4 | |a Climatology | |
650 | 4 | |a Self organizing maps | |
650 | 4 | |a El Nino phenomena | |
700 | 1 | |a Tan, Xin |4 oth | |
700 | 1 | |a Hartmann, Dennis L |4 oth | |
700 | 1 | |a Ceppi, Paulo |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geophysical research letters |d Washington, DC : Union, 1974 |g 44(2017), 15, Seite 8011-8016 |w (DE-627)129095109 |w (DE-600)7403-2 |w (DE-576)01443122X |x 0094-8276 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2017 |g number:15 |g pages:8011-8016 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2017GL074611 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1932421806 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 44 |j 2017 |e 15 |h 8011-8016 |
author_variant |
m b mb |
---|---|
matchkey_str |
article:00948276:2017----::lsiynterpshrcrcroptenosdesr |
hierarchy_sort_str |
2017 |
bklnumber |
38.70 |
publishDate |
2017 |
allfields |
10.1002/2017GL074611 doi PQ20171228 (DE-627)OLC199698117X (DE-599)GBVOLC199698117X (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Bao, Ming verfasserin aut Classifying the tropospheric precursor patterns of sudden stratospheric warmings 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena Tan, Xin oth Hartmann, Dennis L oth Ceppi, Paulo oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 15, Seite 8011-8016 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:15 pages:8011-8016 http://dx.doi.org/10.1002/2017GL074611 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract https://search.proquest.com/docview/1932421806 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 15 8011-8016 |
spelling |
10.1002/2017GL074611 doi PQ20171228 (DE-627)OLC199698117X (DE-599)GBVOLC199698117X (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Bao, Ming verfasserin aut Classifying the tropospheric precursor patterns of sudden stratospheric warmings 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena Tan, Xin oth Hartmann, Dennis L oth Ceppi, Paulo oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 15, Seite 8011-8016 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:15 pages:8011-8016 http://dx.doi.org/10.1002/2017GL074611 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract https://search.proquest.com/docview/1932421806 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 15 8011-8016 |
allfields_unstemmed |
10.1002/2017GL074611 doi PQ20171228 (DE-627)OLC199698117X (DE-599)GBVOLC199698117X (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Bao, Ming verfasserin aut Classifying the tropospheric precursor patterns of sudden stratospheric warmings 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena Tan, Xin oth Hartmann, Dennis L oth Ceppi, Paulo oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 15, Seite 8011-8016 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:15 pages:8011-8016 http://dx.doi.org/10.1002/2017GL074611 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract https://search.proquest.com/docview/1932421806 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 15 8011-8016 |
allfieldsGer |
10.1002/2017GL074611 doi PQ20171228 (DE-627)OLC199698117X (DE-599)GBVOLC199698117X (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Bao, Ming verfasserin aut Classifying the tropospheric precursor patterns of sudden stratospheric warmings 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena Tan, Xin oth Hartmann, Dennis L oth Ceppi, Paulo oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 15, Seite 8011-8016 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:15 pages:8011-8016 http://dx.doi.org/10.1002/2017GL074611 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract https://search.proquest.com/docview/1932421806 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 15 8011-8016 |
allfieldsSound |
10.1002/2017GL074611 doi PQ20171228 (DE-627)OLC199698117X (DE-599)GBVOLC199698117X (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Bao, Ming verfasserin aut Classifying the tropospheric precursor patterns of sudden stratospheric warmings 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena Tan, Xin oth Hartmann, Dennis L oth Ceppi, Paulo oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 15, Seite 8011-8016 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:15 pages:8011-8016 http://dx.doi.org/10.1002/2017GL074611 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract https://search.proquest.com/docview/1932421806 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 15 8011-8016 |
language |
English |
source |
Enthalten in Geophysical research letters 44(2017), 15, Seite 8011-8016 volume:44 year:2017 number:15 pages:8011-8016 |
sourceStr |
Enthalten in Geophysical research letters 44(2017), 15, Seite 8011-8016 volume:44 year:2017 number:15 pages:8011-8016 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geophysical research letters |
authorswithroles_txt_mv |
Bao, Ming @@aut@@ Tan, Xin @@oth@@ Hartmann, Dennis L @@oth@@ Ceppi, Paulo @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129095109 |
dewey-sort |
3550 |
id |
OLC199698117X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199698117X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170719.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2017GL074611</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199698117X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199698117X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classifying the tropospheric precursor patterns of sudden stratospheric warmings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sudden stratospheric warmings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precursor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Western hemisphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Troposphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Southern Oscillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino-Southern Oscillation event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climatology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self organizing maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino phenomena</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Xin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartmann, Dennis L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ceppi, Paulo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">44(2017), 15, Seite 8011-8016</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:8011-8016</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2017GL074611</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1932421806</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">15</subfield><subfield code="h">8011-8016</subfield></datafield></record></collection>
|
author |
Bao, Ming |
spellingShingle |
Bao, Ming ddc 550 bkl 38.70 misc sudden stratospheric warmings misc precursor misc classification misc Planetary waves misc Clusters misc Western hemisphere misc Circulation misc Troposphere misc Maps misc Southern Oscillation misc Classification misc El Nino misc El Nino-Southern Oscillation event misc Cluster analysis misc Climatology misc Self organizing maps misc El Nino phenomena Classifying the tropospheric precursor patterns of sudden stratospheric warmings |
authorStr |
Bao, Ming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095109 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0094-8276 |
topic_title |
550 DNB 38.70 bkl Classifying the tropospheric precursor patterns of sudden stratospheric warmings sudden stratospheric warmings precursor classification Planetary waves Clusters Western hemisphere Circulation Troposphere Maps Southern Oscillation Classification El Nino El Nino-Southern Oscillation event Cluster analysis Climatology Self organizing maps El Nino phenomena |
topic |
ddc 550 bkl 38.70 misc sudden stratospheric warmings misc precursor misc classification misc Planetary waves misc Clusters misc Western hemisphere misc Circulation misc Troposphere misc Maps misc Southern Oscillation misc Classification misc El Nino misc El Nino-Southern Oscillation event misc Cluster analysis misc Climatology misc Self organizing maps misc El Nino phenomena |
topic_unstemmed |
ddc 550 bkl 38.70 misc sudden stratospheric warmings misc precursor misc classification misc Planetary waves misc Clusters misc Western hemisphere misc Circulation misc Troposphere misc Maps misc Southern Oscillation misc Classification misc El Nino misc El Nino-Southern Oscillation event misc Cluster analysis misc Climatology misc Self organizing maps misc El Nino phenomena |
topic_browse |
ddc 550 bkl 38.70 misc sudden stratospheric warmings misc precursor misc classification misc Planetary waves misc Clusters misc Western hemisphere misc Circulation misc Troposphere misc Maps misc Southern Oscillation misc Classification misc El Nino misc El Nino-Southern Oscillation event misc Cluster analysis misc Climatology misc Self organizing maps misc El Nino phenomena |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
x t xt d l h dl dlh p c pc |
hierarchy_parent_title |
Geophysical research letters |
hierarchy_parent_id |
129095109 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geophysical research letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X |
title |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings |
ctrlnum |
(DE-627)OLC199698117X (DE-599)GBVOLC199698117X (PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230 (KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde |
title_full |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings |
author_sort |
Bao, Ming |
journal |
Geophysical research letters |
journalStr |
Geophysical research letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
8011 |
author_browse |
Bao, Ming |
container_volume |
44 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Bao, Ming |
doi_str_mv |
10.1002/2017GL074611 |
dewey-full |
550 |
title_sort |
classifying the tropospheric precursor patterns of sudden stratospheric warmings |
title_auth |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings |
abstract |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs |
abstractGer |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs |
abstract_unstemmed |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 |
container_issue |
15 |
title_short |
Classifying the tropospheric precursor patterns of sudden stratospheric warmings |
url |
http://dx.doi.org/10.1002/2017GL074611 http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract https://search.proquest.com/docview/1932421806 |
remote_bool |
false |
author2 |
Tan, Xin Hartmann, Dennis L Ceppi, Paulo |
author2Str |
Tan, Xin Hartmann, Dennis L Ceppi, Paulo |
ppnlink |
129095109 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/2017GL074611 |
up_date |
2024-07-04T01:54:19.455Z |
_version_ |
1803611599752134656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199698117X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170719.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2017GL074611</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199698117X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199698117X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1368-b091a3420a96f7e9aa7c991012b34806870aa672442d4528e7c840f0e9ba230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820170000044001508011classifyingthetroposphericprecursorpatternsofsudde</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classifying the tropospheric precursor patterns of sudden stratospheric warmings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classifying the tropospheric precursor patterns of sudden stratospheric warmings (SSWs) may provide insight into the different physical mechanisms of SSWs. Based on 37 major SSWs during the 1958–2014 winters in the ERA reanalysis data sets, the self‐organizing maps method is used to classify the tropospheric precursor patterns of SSWs. The cluster analysis indicates that one of the precursor patterns appears as a mixed pattern consisting of the negative‐signed Western Hemisphere circulation pattern and the positive phase of the Pacific‐North America pattern. The mixed pattern exhibits higher statistical significance as a precursor pattern of SSWs than other previously identified precursors such as the subpolar North Pacific low, Atlantic blocking, and the western Pacific pattern. Other clusters confirm northern European blocking and Gulf of Alaska blocking as precursors of SSWs. Linear interference with the climatological planetary waves provides a simple interpretation for the precursors. The relationship between the classified precursor patterns of SSWs and ENSO phases as well as the types of SSWs is discussed. The SOM method is used to classify the tropospheric precursor patterns of SSWs One of the precursor patterns appears as a mixture of the negative‐signed WH pattern and the positive phase of the PNA pattern Classifying the precursor patterns could help to better understand the different triggering mechanisms of SSWs</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sudden stratospheric warmings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precursor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clusters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Western hemisphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Troposphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Southern Oscillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino-Southern Oscillation event</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climatology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self organizing maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">El Nino phenomena</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Xin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartmann, Dennis L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ceppi, Paulo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">44(2017), 15, Seite 8011-8016</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:15</subfield><subfield code="g">pages:8011-8016</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2017GL074611</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2017GL074611/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1932421806</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">15</subfield><subfield code="h">8011-8016</subfield></datafield></record></collection>
|
score |
7.4013624 |