Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling
Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result i...
Ausführliche Beschreibung
Autor*in: |
Beniest, A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geophysical research letters - Washington, DC : Union, 1974, 44(2017), 19, Seite 9589-9597 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2017 ; number:19 ; pages:9589-9597 |
Links: |
---|
DOI / URN: |
10.1002/2017GL074866 |
---|
Katalog-ID: |
OLC1996983385 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1996983385 | ||
003 | DE-627 | ||
005 | 20220223170722.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2017GL074866 |2 doi | |
028 | 5 | 2 | |a PQ20171228 |
035 | |a (DE-627)OLC1996983385 | ||
035 | |a (DE-599)GBVOLC1996983385 | ||
035 | |a (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 | ||
035 | |a (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Beniest, A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up | ||
540 | |a Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a thermomechanical modeling | |
650 | 4 | |a plume‐lithosphere interaction | |
650 | 4 | |a continental breakup | |
650 | 4 | |a North Atlantic | |
650 | 4 | |a multibranch rifting | |
650 | 4 | |a rheology | |
650 | 4 | |a Inhomogeneity | |
650 | 4 | |a Spreading | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Thermomechanical analysis | |
650 | 4 | |a Lithosphere | |
650 | 4 | |a Spreading centres | |
650 | 4 | |a Mantle plumes | |
650 | 4 | |a Models | |
650 | 4 | |a Moho | |
650 | 4 | |a Lava | |
650 | 4 | |a Magma | |
650 | 4 | |a Mantle | |
650 | 4 | |a Deformation | |
650 | 4 | |a Modelling | |
700 | 1 | |a Koptev, A |4 oth | |
700 | 1 | |a Leroy, S |4 oth | |
700 | 1 | |a Sassi, W |4 oth | |
700 | 1 | |a Guichet, X |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geophysical research letters |d Washington, DC : Union, 1974 |g 44(2017), 19, Seite 9589-9597 |w (DE-627)129095109 |w (DE-600)7403-2 |w (DE-576)01443122X |x 0094-8276 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2017 |g number:19 |g pages:9589-9597 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2017GL074866 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract |
856 | 4 | 2 | |u https://search.proquest.com/docview/1956120414 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 44 |j 2017 |e 19 |h 9589-9597 |
author_variant |
a b ab |
---|---|
matchkey_str |
article:00948276:2017----::wbacbekpytmbaigeatelmisgtfo |
hierarchy_sort_str |
2017 |
bklnumber |
38.70 |
publishDate |
2017 |
allfields |
10.1002/2017GL074866 doi PQ20171228 (DE-627)OLC1996983385 (DE-599)GBVOLC1996983385 (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Beniest, A verfasserin aut Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling Koptev, A oth Leroy, S oth Sassi, W oth Guichet, X oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 19, Seite 9589-9597 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:19 pages:9589-9597 http://dx.doi.org/10.1002/2017GL074866 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract https://search.proquest.com/docview/1956120414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 19 9589-9597 |
spelling |
10.1002/2017GL074866 doi PQ20171228 (DE-627)OLC1996983385 (DE-599)GBVOLC1996983385 (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Beniest, A verfasserin aut Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling Koptev, A oth Leroy, S oth Sassi, W oth Guichet, X oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 19, Seite 9589-9597 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:19 pages:9589-9597 http://dx.doi.org/10.1002/2017GL074866 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract https://search.proquest.com/docview/1956120414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 19 9589-9597 |
allfields_unstemmed |
10.1002/2017GL074866 doi PQ20171228 (DE-627)OLC1996983385 (DE-599)GBVOLC1996983385 (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Beniest, A verfasserin aut Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling Koptev, A oth Leroy, S oth Sassi, W oth Guichet, X oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 19, Seite 9589-9597 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:19 pages:9589-9597 http://dx.doi.org/10.1002/2017GL074866 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract https://search.proquest.com/docview/1956120414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 19 9589-9597 |
allfieldsGer |
10.1002/2017GL074866 doi PQ20171228 (DE-627)OLC1996983385 (DE-599)GBVOLC1996983385 (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Beniest, A verfasserin aut Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling Koptev, A oth Leroy, S oth Sassi, W oth Guichet, X oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 19, Seite 9589-9597 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:19 pages:9589-9597 http://dx.doi.org/10.1002/2017GL074866 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract https://search.proquest.com/docview/1956120414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 19 9589-9597 |
allfieldsSound |
10.1002/2017GL074866 doi PQ20171228 (DE-627)OLC1996983385 (DE-599)GBVOLC1996983385 (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Beniest, A verfasserin aut Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved. thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling Koptev, A oth Leroy, S oth Sassi, W oth Guichet, X oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 44(2017), 19, Seite 9589-9597 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:44 year:2017 number:19 pages:9589-9597 http://dx.doi.org/10.1002/2017GL074866 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract https://search.proquest.com/docview/1956120414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 44 2017 19 9589-9597 |
language |
English |
source |
Enthalten in Geophysical research letters 44(2017), 19, Seite 9589-9597 volume:44 year:2017 number:19 pages:9589-9597 |
sourceStr |
Enthalten in Geophysical research letters 44(2017), 19, Seite 9589-9597 volume:44 year:2017 number:19 pages:9589-9597 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geophysical research letters |
authorswithroles_txt_mv |
Beniest, A @@aut@@ Koptev, A @@oth@@ Leroy, S @@oth@@ Sassi, W @@oth@@ Guichet, X @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129095109 |
dewey-sort |
3550 |
id |
OLC1996983385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996983385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170722.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2017GL074866</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996983385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996983385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beniest, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermomechanical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume‐lithosphere interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continental breakup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">North Atlantic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multibranch rifting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spreading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermomechanical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithosphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spreading centres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mantle plumes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moho</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lava</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mantle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koptev, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leroy, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sassi, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guichet, X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">44(2017), 19, Seite 9589-9597</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:9589-9597</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2017GL074866</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1956120414</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield><subfield code="h">9589-9597</subfield></datafield></record></collection>
|
author |
Beniest, A |
spellingShingle |
Beniest, A ddc 550 bkl 38.70 misc thermomechanical modeling misc plume‐lithosphere interaction misc continental breakup misc North Atlantic misc multibranch rifting misc rheology misc Inhomogeneity misc Spreading misc Mathematical models misc Thermomechanical analysis misc Lithosphere misc Spreading centres misc Mantle plumes misc Models misc Moho misc Lava misc Magma misc Mantle misc Deformation misc Modelling Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling |
authorStr |
Beniest, A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095109 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0094-8276 |
topic_title |
550 DNB 38.70 bkl Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling thermomechanical modeling plume‐lithosphere interaction continental breakup North Atlantic multibranch rifting rheology Inhomogeneity Spreading Mathematical models Thermomechanical analysis Lithosphere Spreading centres Mantle plumes Models Moho Lava Magma Mantle Deformation Modelling |
topic |
ddc 550 bkl 38.70 misc thermomechanical modeling misc plume‐lithosphere interaction misc continental breakup misc North Atlantic misc multibranch rifting misc rheology misc Inhomogeneity misc Spreading misc Mathematical models misc Thermomechanical analysis misc Lithosphere misc Spreading centres misc Mantle plumes misc Models misc Moho misc Lava misc Magma misc Mantle misc Deformation misc Modelling |
topic_unstemmed |
ddc 550 bkl 38.70 misc thermomechanical modeling misc plume‐lithosphere interaction misc continental breakup misc North Atlantic misc multibranch rifting misc rheology misc Inhomogeneity misc Spreading misc Mathematical models misc Thermomechanical analysis misc Lithosphere misc Spreading centres misc Mantle plumes misc Models misc Moho misc Lava misc Magma misc Mantle misc Deformation misc Modelling |
topic_browse |
ddc 550 bkl 38.70 misc thermomechanical modeling misc plume‐lithosphere interaction misc continental breakup misc North Atlantic misc multibranch rifting misc rheology misc Inhomogeneity misc Spreading misc Mathematical models misc Thermomechanical analysis misc Lithosphere misc Spreading centres misc Mantle plumes misc Models misc Moho misc Lava misc Magma misc Mantle misc Deformation misc Modelling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a k ak s l sl w s ws x g xg |
hierarchy_parent_title |
Geophysical research letters |
hierarchy_parent_id |
129095109 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geophysical research letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X |
title |
Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling |
ctrlnum |
(DE-627)OLC1996983385 (DE-599)GBVOLC1996983385 (PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0 (KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight |
title_full |
Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling |
author_sort |
Beniest, A |
journal |
Geophysical research letters |
journalStr |
Geophysical research letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
9589 |
author_browse |
Beniest, A |
container_volume |
44 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Beniest, A |
doi_str_mv |
10.1002/2017GL074866 |
dewey-full |
550 |
title_sort |
two‐branch break‐up systems by a single mantle plume: insights from numerical modeling |
title_auth |
Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling |
abstract |
Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up |
abstractGer |
Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up |
abstract_unstemmed |
Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 |
container_issue |
19 |
title_short |
Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling |
url |
http://dx.doi.org/10.1002/2017GL074866 http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract https://search.proquest.com/docview/1956120414 |
remote_bool |
false |
author2 |
Koptev, A Leroy, S Sassi, W Guichet, X |
author2Str |
Koptev, A Leroy, S Sassi, W Guichet, X |
ppnlink |
129095109 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/2017GL074866 |
up_date |
2024-07-04T01:54:51.846Z |
_version_ |
1803611633717608448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1996983385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170722.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2017GL074866</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1996983385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1996983385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1368-70afe60802fba3203166b5d5bebb7091bd4d9a4fd29840289e3ad106fadf644c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820170000044001909589twobranchbreakupsystemsbyasinglemantleplumeinsight</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beniest, A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two‐Branch Break‐up Systems by a Single Mantle Plume: Insights from Numerical Modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermomechanical modeling of plume‐induced continental break‐up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift‐to‐spreading system. Models with a warmer Moho temperature are more likely to result in “plume‐centered” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far‐field forcing are inclined to develop a “structural‐inherited” mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break‐up branches (both “plume‐centered” and “structural inherited”) that form consecutively with a few million years delay. With our experimental setup, this break‐up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift‐to‐spreading systems in a lithosphere with a lateral strength contrast. A single mantle plume can be responsible for two noncontemporaneous rift‐to‐spreading systems in a laterally nonhomogeneous lithosphere The prerift distance between a plume and a lateral lithospheric boundary between two segments controls rift‐to‐spreading systems The location of a plume with respect to lithosphere inhomogeneities is a key variable when modeling plume‐induced continental break‐up</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2017. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermomechanical modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume‐lithosphere interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continental breakup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">North Atlantic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multibranch rifting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spreading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermomechanical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithosphere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spreading centres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mantle plumes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moho</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lava</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mantle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modelling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koptev, A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leroy, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sassi, W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guichet, X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">44(2017), 19, Seite 9589-9597</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:19</subfield><subfield code="g">pages:9589-9597</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2017GL074866</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2017GL074866/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://search.proquest.com/docview/1956120414</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2017</subfield><subfield code="e">19</subfield><subfield code="h">9589-9597</subfield></datafield></record></collection>
|
score |
7.4018106 |