Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems
Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the...
Ausführliche Beschreibung
Autor*in: |
Liu, Sicong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on communications - New York, NY : IEEE, 1972, 65(2017), 10, Seite 4559-4571 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2017 ; number:10 ; pages:4559-4571 |
Links: |
---|
DOI / URN: |
10.1109/TCOMM.2017.2723572 |
---|
Katalog-ID: |
OLC199716809X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC199716809X | ||
003 | DE-627 | ||
005 | 20220221081400.0 | ||
007 | tu | ||
008 | 171125s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TCOMM.2017.2723572 |2 doi | |
028 | 5 | 2 | |a PQ20171125 |
035 | |a (DE-627)OLC199716809X | ||
035 | |a (DE-599)GBVOLC199716809X | ||
035 | |a (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 | ||
035 | |a (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a SA 5540 |q AVZ |2 rvk | ||
100 | 1 | |a Liu, Sicong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. | ||
650 | 4 | |a Covariance matrices | |
650 | 4 | |a narrowband interference | |
650 | 4 | |a long term evolution advanced | |
650 | 4 | |a Bayes methods | |
650 | 4 | |a OFDM | |
650 | 4 | |a temporal differential measuring | |
650 | 4 | |a Broadband communication | |
650 | 4 | |a Narrowband | |
650 | 4 | |a Estimation | |
650 | 4 | |a Interference | |
650 | 4 | |a Narrowband Internet-of-Things | |
650 | 4 | |a block sparse Bayesian learning | |
700 | 1 | |a Yang, Fang |4 oth | |
700 | 1 | |a Song, Jian |4 oth | |
700 | 1 | |a Han, Zhu |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on communications |d New York, NY : IEEE, 1972 |g 65(2017), 10, Seite 4559-4571 |w (DE-627)129300624 |w (DE-600)121987-X |w (DE-576)014493063 |x 0090-6778 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2017 |g number:10 |g pages:4559-4571 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TCOMM.2017.2723572 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/document/7968406 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
936 | r | v | |a SA 5540 |
951 | |a AR | ||
952 | |d 65 |j 2017 |e 10 |h 4559-4571 |
author_variant |
s l sl |
---|---|
matchkey_str |
article:00906778:2017----::lcsasbysalannbsdboitreeceiiain |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1109/TCOMM.2017.2723572 doi PQ20171125 (DE-627)OLC199716809X (DE-599)GBVOLC199716809X (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee DE-627 ger DE-627 rakwb eng 620 DE-600 SA 5540 AVZ rvk Liu, Sicong verfasserin aut Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning Yang, Fang oth Song, Jian oth Han, Zhu oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 10, Seite 4559-4571 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:10 pages:4559-4571 http://dx.doi.org/10.1109/TCOMM.2017.2723572 Volltext http://ieeexplore.ieee.org/document/7968406 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 10 4559-4571 |
spelling |
10.1109/TCOMM.2017.2723572 doi PQ20171125 (DE-627)OLC199716809X (DE-599)GBVOLC199716809X (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee DE-627 ger DE-627 rakwb eng 620 DE-600 SA 5540 AVZ rvk Liu, Sicong verfasserin aut Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning Yang, Fang oth Song, Jian oth Han, Zhu oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 10, Seite 4559-4571 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:10 pages:4559-4571 http://dx.doi.org/10.1109/TCOMM.2017.2723572 Volltext http://ieeexplore.ieee.org/document/7968406 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 10 4559-4571 |
allfields_unstemmed |
10.1109/TCOMM.2017.2723572 doi PQ20171125 (DE-627)OLC199716809X (DE-599)GBVOLC199716809X (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee DE-627 ger DE-627 rakwb eng 620 DE-600 SA 5540 AVZ rvk Liu, Sicong verfasserin aut Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning Yang, Fang oth Song, Jian oth Han, Zhu oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 10, Seite 4559-4571 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:10 pages:4559-4571 http://dx.doi.org/10.1109/TCOMM.2017.2723572 Volltext http://ieeexplore.ieee.org/document/7968406 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 10 4559-4571 |
allfieldsGer |
10.1109/TCOMM.2017.2723572 doi PQ20171125 (DE-627)OLC199716809X (DE-599)GBVOLC199716809X (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee DE-627 ger DE-627 rakwb eng 620 DE-600 SA 5540 AVZ rvk Liu, Sicong verfasserin aut Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning Yang, Fang oth Song, Jian oth Han, Zhu oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 10, Seite 4559-4571 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:10 pages:4559-4571 http://dx.doi.org/10.1109/TCOMM.2017.2723572 Volltext http://ieeexplore.ieee.org/document/7968406 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 10 4559-4571 |
allfieldsSound |
10.1109/TCOMM.2017.2723572 doi PQ20171125 (DE-627)OLC199716809X (DE-599)GBVOLC199716809X (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee DE-627 ger DE-627 rakwb eng 620 DE-600 SA 5540 AVZ rvk Liu, Sicong verfasserin aut Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning Yang, Fang oth Song, Jian oth Han, Zhu oth Enthalten in IEEE transactions on communications New York, NY : IEEE, 1972 65(2017), 10, Seite 4559-4571 (DE-627)129300624 (DE-600)121987-X (DE-576)014493063 0090-6778 nnns volume:65 year:2017 number:10 pages:4559-4571 http://dx.doi.org/10.1109/TCOMM.2017.2723572 Volltext http://ieeexplore.ieee.org/document/7968406 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 SA 5540 AR 65 2017 10 4559-4571 |
language |
English |
source |
Enthalten in IEEE transactions on communications 65(2017), 10, Seite 4559-4571 volume:65 year:2017 number:10 pages:4559-4571 |
sourceStr |
Enthalten in IEEE transactions on communications 65(2017), 10, Seite 4559-4571 volume:65 year:2017 number:10 pages:4559-4571 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on communications |
authorswithroles_txt_mv |
Liu, Sicong @@aut@@ Yang, Fang @@oth@@ Song, Jian @@oth@@ Han, Zhu @@oth@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
129300624 |
dewey-sort |
3620 |
id |
OLC199716809X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199716809X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221081400.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCOMM.2017.2723572</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199716809X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199716809X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5540</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Sicong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Covariance matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">narrowband interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long term evolution advanced</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayes methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OFDM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temporal differential measuring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Narrowband</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Narrowband Internet-of-Things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">block sparse Bayesian learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on communications</subfield><subfield code="d">New York, NY : IEEE, 1972</subfield><subfield code="g">65(2017), 10, Seite 4559-4571</subfield><subfield code="w">(DE-627)129300624</subfield><subfield code="w">(DE-600)121987-X</subfield><subfield code="w">(DE-576)014493063</subfield><subfield code="x">0090-6778</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:4559-4571</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCOMM.2017.2723572</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7968406</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5540</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">4559-4571</subfield></datafield></record></collection>
|
author |
Liu, Sicong |
spellingShingle |
Liu, Sicong ddc 620 rvk SA 5540 misc Covariance matrices misc narrowband interference misc long term evolution advanced misc Bayes methods misc OFDM misc temporal differential measuring misc Broadband communication misc Narrowband misc Estimation misc Interference misc Narrowband Internet-of-Things misc block sparse Bayesian learning Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems |
authorStr |
Liu, Sicong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129300624 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0090-6778 |
topic_title |
620 DE-600 SA 5540 AVZ rvk Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems Covariance matrices narrowband interference long term evolution advanced Bayes methods OFDM temporal differential measuring Broadband communication Narrowband Estimation Interference Narrowband Internet-of-Things block sparse Bayesian learning |
topic |
ddc 620 rvk SA 5540 misc Covariance matrices misc narrowband interference misc long term evolution advanced misc Bayes methods misc OFDM misc temporal differential measuring misc Broadband communication misc Narrowband misc Estimation misc Interference misc Narrowband Internet-of-Things misc block sparse Bayesian learning |
topic_unstemmed |
ddc 620 rvk SA 5540 misc Covariance matrices misc narrowband interference misc long term evolution advanced misc Bayes methods misc OFDM misc temporal differential measuring misc Broadband communication misc Narrowband misc Estimation misc Interference misc Narrowband Internet-of-Things misc block sparse Bayesian learning |
topic_browse |
ddc 620 rvk SA 5540 misc Covariance matrices misc narrowband interference misc long term evolution advanced misc Bayes methods misc OFDM misc temporal differential measuring misc Broadband communication misc Narrowband misc Estimation misc Interference misc Narrowband Internet-of-Things misc block sparse Bayesian learning |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
f y fy j s js z h zh |
hierarchy_parent_title |
IEEE transactions on communications |
hierarchy_parent_id |
129300624 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129300624 (DE-600)121987-X (DE-576)014493063 |
title |
Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems |
ctrlnum |
(DE-627)OLC199716809X (DE-599)GBVOLC199716809X (PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0 (KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee |
title_full |
Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems |
author_sort |
Liu, Sicong |
journal |
IEEE transactions on communications |
journalStr |
IEEE transactions on communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4559 |
author_browse |
Liu, Sicong |
container_volume |
65 |
class |
620 DE-600 SA 5540 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Liu, Sicong |
doi_str_mv |
10.1109/TCOMM.2017.2723572 |
dewey-full |
620 |
title_sort |
block sparse bayesian learning-based nb-iot interference elimination in lte-advanced systems |
title_auth |
Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems |
abstract |
Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. |
abstractGer |
Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. |
abstract_unstemmed |
Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MKW GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 |
container_issue |
10 |
title_short |
Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems |
url |
http://dx.doi.org/10.1109/TCOMM.2017.2723572 http://ieeexplore.ieee.org/document/7968406 |
remote_bool |
false |
author2 |
Yang, Fang Song, Jian Han, Zhu |
author2Str |
Yang, Fang Song, Jian Han, Zhu |
ppnlink |
129300624 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TCOMM.2017.2723572 |
up_date |
2024-07-04T02:20:02.300Z |
_version_ |
1803613217541324800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC199716809X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221081400.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">171125s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TCOMM.2017.2723572</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20171125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC199716809X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC199716809X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i656-153a399bb2bd84bd3f2f127c5f8018f3eb303e984fe0ef9bb0f9b8e8daa492fc0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0043613520170000065001004559blocksparsebayesianlearningbasednbiotinterferencee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5540</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Sicong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Block Sparse Bayesian Learning-Based NB-IoT Interference Elimination in LTE-Advanced Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Narrowband Internet-of-Things (NB-IoT) is one of the emerging 5G technologies, but might introduce narrowband interference (NBI) to existing broadband systems, such as long-term evolution advanced (LTE-A) systems. Thus, the mitigation of the NB-IoT interference to LTE-A is an important issue for the harmonic coexistence and compatibility between 4G and 5G. In this paper, a newly emerged sparse approximation technique, block sparse Bayesian learning (BSBL), is utilized to estimate the NB-IoT interference in LTE-A systems. The block sparse representation of the NBI is constituted through the proposed temporal differential measuring approach, and the BSBL theory is utilized to recover the practical block sparse NBI. A BSBL-based method, partition estimated BSBL, is proposed. With the aid of the estimated block partition beforehand, the Bayesian parameters are obtained to yield the NBI estimation. The intra-block correlation (IBC) is considered to facilitate the recovery. Moreover, exploiting the inherent structure of the identical IBC matrix, another method of informative BSBL is proposed to further improve the accuracy, which does not require prior estimation of the block partition. Reported simulation results demonstrate that the proposed methods are effective in canceling the NB-IoT interference in LTE-A systems, and significantly outperform other conventional methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Covariance matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">narrowband interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">long term evolution advanced</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayes methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OFDM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temporal differential measuring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Narrowband</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Narrowband Internet-of-Things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">block sparse Bayesian learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Zhu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on communications</subfield><subfield code="d">New York, NY : IEEE, 1972</subfield><subfield code="g">65(2017), 10, Seite 4559-4571</subfield><subfield code="w">(DE-627)129300624</subfield><subfield code="w">(DE-600)121987-X</subfield><subfield code="w">(DE-576)014493063</subfield><subfield code="x">0090-6778</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:4559-4571</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TCOMM.2017.2723572</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/document/7968406</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5540</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="h">4559-4571</subfield></datafield></record></collection>
|
score |
7.4018183 |